Выбор колеса рулетки, поиск кармана без сортировки
В настоящее время я пытаюсь реализовать выбор колеса Java-рулетки (см. http://en.wikipedia.org/wiki/Fitness_proportionate_selection).
Моя проблема возникает после нахождения относительной пригодности для каждого отдельного моего населения.
Например, скажем, я создаю пробалистическую рулетку, такую как:
индивидуум а: 0 - 0,3 индивидуум б: 0,3 - 0,5 индивидуум с: 0,5 - 1
Принимая во внимание, что индивидуальный a имеет 30% выбора при выборе, b имеет 20%, а c имеет 50% выбора, если я вращаю эту рулетку.
Моя проблема в том, что в статье в Википедии упоминается "Заметьте, что прирост производительности может быть достигнут с помощью бинарного поиска, а не линейного поиска, чтобы найти правильный карман". подразумевая, что после генерации моего случайного числа я должен выполнить линейный или двоичный поиск моих карманов, чтобы найти, какой из них был выбран.
Дело в том, что с точки зрения производительности этот бинарный поиск для нахождения правого кармана на каждом ходу кажется ненужным, не было бы возможно просто иметь какой-то HashMap, тогда как каждая запись в таблице связана с диапазоном, как показано выше и вытягивание с использованием ключа в пределах этого диапазона вытянет ассоциированного человека за линейное время вместо того, чтобы требовать двоичного поиска.
Я посмотрел на древовидную карту, но древовидная карта должна изначально сортировать карманы, что не годится, не сортируется.
3 ответа
С n=1000 особей и выбрав k=100 из них, вы можете сделать
- 100 бинарных поисков, O(k logn)
- или 1.000 помещает в Tree, HashMap или какую-то другую структуру данных, O(n+k)
Только тестирование покажет, что быстрее, производительность зависит от n, k и реализаций.
HashMap позволяет находить элементы только по точному значению ключа. Ваш алгоритм требует найти значение по диапазону. Таким образом, использование бинарного поиска или TreeMap даст вам сложность O(log(n)). Я не думаю, что возможно иметь лучшую сложность.
И я не понимаю, о чем ты говоришь. Похоже, вы говорите, что линейный поиск имеет лучшую производительность, чем TreeMap или бинарный поиск. Это не правильно.
Ну, может быть, этот код выбора колеса рулетки в java может дать вам понять, что вы можете получить все, что вы можете получить здесь, класс Chromosome
import java.util.*; // Random, Arrays, Vector, List
import java.io.*; // BufferedWriter, FileWriter
/**
* <code>Evolution</code> implements the genetic algorithm.
*
* This is an executable class that uses the <code>Chromosome<code>
* class to implement the genetic algorithm. It can be run with the
* following command line calls:
* <UL>
* <LI>java Evolution ones population_size chromosome_size generations crossover_rate mutation_rate logfile
* <LI>java Evolution binary population_size chromosome_size generations crossover_rate mutation_rate logfile binary_number
* </UL>
* <P>
* Where the parameters are:
* <UL>
* <LI><B>ones</B>: use the number of ones in the gene sequence as the
* fitness function
* <LI><B>binary</B>: measure the closeness of the gene sequence to a binary
* number for the fitness function
* <LI><B>chromosome_size</B>: an int number of genes in each chromosome
* <LI><B>generations</B>: an int number of generations to produce
* <LI><B>crossover_rate</B>: a double gene crossover rate between 0 and 1
* <LI><B>mutation_rate</B>: a double gene mutation rate between 0 and 1
* <LI><B>logfile</B>: a String name for the log file
* <LI><B>binary_number</B>: an int to be used as the binary number for
* the binary number fitness function
* </UL>
* <P>
* Some example command line calls:
* <UL>
* <LI>java Evolution ones 100 20 100 0.7 0.001 ones.log
* <LI>java Evolution binary 100 20 100 0.7 0.001 binary.log 3755865
* </UL>
* <P>
* This class implements a "roulette wheel" selection method, based on each
* chromosome's fitness value. The genetic operators are single-point
* crossover and point-mutation. To boost the selectiveness of each
* generation, the <code>threshold</code> value in the <code>selection</code>
* method can be set to an arbitrary fitness value, or to the average
* fitness value, etc.
* <P>
*/
public class Evolution
{
/**
* holds the best fitness value of a population for a particular
* generation
*/
private int best_fit = 0;
/**
* holds the sum of the fitness values of the population for a particular
* generation
*/
private int total_fit = 0;
/**
* holds the population
*/
private Vector population = null;
/**
* holds the "roulette odds" for each individual in a generation. Each
* index corresponds to an individual in the population, and each value
* represents the sum of the fitness values for that individual and all
* the prior ones in the population. The "roulette wheel" algorithm is
* performed by choosing a random number between zero and
* <code>total_fit</code> (inclusive). This number is then searched for
* in the <code>roulette</code> array. The index which contains the
* random number or the next higher number is the individual chosen for
* that "spin of the roulette wheel."
*
* @see #selection(double)
*/
private int roulette[] = null;
/**
* holds onto a <code>Random</code> object
*
* @see java.util.Random
*/
private Random rand = null;
/**
* a double between 0 and 1 (inclusive) that represents the rate at which
* crossover occurs in selected individuals
*/
private double crossover_rate = 0;
/**
* a double between 0 and 1 (inclusive) that represents the rate at which
* mutation occurs in selected individuals
*/
private double mutation_rate = 0;
/**
* Constructor for <code>Evolution</code> that use the total number of
* ones in a <code>Chromosome</code>'s gene sequence as its fitness
* function.
*
* @param pop_size a positive <code>int</code> number of
* chromosomes in the population for each generation
* @param chrom_size a positive <code>int</code> number of genes in each
* <code>Chromosome</code> object's gene sequence
* @param pc the crossover rate; this should be a
* <code>double</code> value between zero and one
* (inclusive)
* @param pc the mutation rate; this should be a
* <code>double</code> value between zero and one
* (inclusive)
*
* @see #crossover_rate
* @see #mutation_rate
* @see Chromosome#Chromosome(int, java.util.Random)
*/
public Evolution(int pop_size, int chrom_size, double pc, double pm)
{
Chromosome c = null;
total_fit = 0;
best_fit = 0;
crossover_rate = pc;
mutation_rate = pm;
// make population and roulette mapping
population = new Vector(pop_size);
roulette = new int[pop_size];
// seed the random number generator
rand = new Random(System.currentTimeMillis());
// make population
for (int i = 0; i < pop_size; i++)
{
c = new Chromosome(chrom_size, rand);
// update fitness information
total_fit = total_fit + c.get_fit();
best_fit = Math.max(best_fit, c.get_fit());
// add chromosome to population and roulette wheel
population.add(c);
roulette[i] = total_fit;
}
}
/**
* Constructor for <code>Evolution</code> that use the proximity of
* a <code>Chromosome</code>'s gene sequence to a <code>target</code>
* sequence as the fitness function.
*
* The <code>Chromosome</code>s made in this <code>Evolution</code> have
* gene sequences equal to <code>target.length</code>. The fitness
* function walks through the indexes of <code>target</code> and the
* given chromosome's gene sequence, and adds one to that chromosome's
* fitness for each gene that has the same value as <code>target</code>.
*
* @param pop_size a positive <code>int</code> number of
* chromosomes in the population for each generation
* @param target a <code>boolean</code> array whose length will be
* used as the length for all <code>Chromosome</code>s
* made by this <code>Evolution</code>; this parameter's
* value will be used by the <code>Chromosome</code>s'
* fitness functions
* @param pc the crossover rate; this should be a
* <code>double</code> value between zero and one
* (inclusive)
* @param pc the mutation rate; this should be a
* <code>double</code> value between zero and one
* (inclusive)
*
* @see #crossover_rate
* @see #mutation_rate
* @see Chromosome#Chromosome(boolean[], java.util.Random)
*/
public Evolution(int pop_size, boolean[] target, double pc, double pm)
{
Chromosome c = null;
total_fit = 0;
best_fit = 0;
crossover_rate = pc;
mutation_rate = pm;
// make population
population = new Vector(pop_size);
roulette = new int[pop_size];
// seed the random number generator
rand = new Random(System.currentTimeMillis());
// make population
for (int i = 0; i < pop_size; i++)
{
c = new Chromosome(target, rand);
// update fitness information
total_fit = total_fit + c.get_fit();
best_fit = Math.max(best_fit, c.get_fit());
// add chromosome to population and roulette wheel
population.add(c);
roulette[i] = total_fit;
}
}
/**
* Probablistically selects <code>Chromosome</code>s from this
* <code>Evolution</code>'s <code>population</code> using the
* code "roulette wheel" algorithm.
*
* This method returns a new <code>List</code> of individuals from the
* previous population who have been probabalistically selected based
* on their fitness. To do this, this method randomly picks a value
* between zero and <code>total_fit</code> (inclusive). It then
* searches for this value in <code>roulette</code>, which is an
* <code>int</code> array the same length as the number of individuals
* in <code>population</code>. Each index in <code>roulette</code>
* corresponds to an individual in the population, and each value in
* the array is the sum of the the fitness values of all the
* individuals before it, plus the fitness value of the current
* individual. A search is done on <code>roulette</code> for the
* randomly generated number. If the number is equal to or less than a
* value in the array, but greater than the value in the previous index,
* that index is selected, and the individual that corresponds to that
* index is added to the selected population.
* <P>
* Often, this function is not "selective" enough. For that reason, one
* can set the <code>threshold</code> parameter. No individual with a
* fitness function less than the threshold will be added to the new
* population. For the simple roulette behavior described above, the
* <code>threshold</code> should be set to zero. Else, it could be
* set to the average fitness, or any other arbitrary value. If it is
* set higher than the fitness of the most fit individual in this
* population, the method will enter an infinite loop.
*
* @param threshold a <code>double</code> fitness value; individuals
* fitness values below this value are guaranteed not
* to added to the <code>List</code> of selected
* individuals. This value must be less than or equal
* to the fitness of the most fit individual in the
* population, or this method will enter an infinite
* loop.
*
* @return a <code>List</code> of length equal to the size of
* the current <code>population</code> composed of
* individuals probabalistically selected from the
* current <code>population</code>
*/
public List selection(double threshold)
{
int index = 0;
int random_int = 0;
int size = population.size();
Vector selected_pop = new Vector(size);
Chromosome selected = null;
// make population
for (int i = 0; i < size; i++)
{
// roulette wheel selection
random_int = rand.nextInt(total_fit + 1);
index = Arrays.binarySearch(roulette, random_int);
if (index < 0)
{
index = Math.abs(index + 1);
}
// get selected chromosome
selected = (Chromosome)(population.get(index));
// ignore if chromosome doesn't meet fitness threshold
if (selected.get_fit() < threshold)
{
i--;
}
// else add chromosome to new selected population
else
{
selected_pop.add(selected.getCopy());
}
}
return selected_pop;
}
/**
* Accepts a <code>List</code> of <code>Chromosomes</code>, performs
* crossover and mutation operations on them with some probability,
* recomputes each <code>Chromosome</code>'s fitness value,
* recomputes the <code>total_fit</code>, <code>best_fit</code>, and
* </code>roulette</code>, and then sets the <code>population</code>
* to this <code>List</code> of new <code>Chromosome</code>.
*
* This method performs two basic functions: crossover and mutation.
* It first clears <code>total_fit</code> and <code>best_fit</code>.
* In the crossover step, the first and second <code>Chromosome</code>
* are selected for crossover, the third and fourth, etc. If there is
* an odd number in the list, the last <code>Chromosome</code> is not
* crossed. Crossover occurs only with the probability given by the
* <code>crossover_rate</code>. This method assumes that the
* elements in the input <code>List</code> were already selected
* randomly, and thus makes no effort to randomly select individuals
* from the input <code>List</code> for crossover.
* <P>
* Mutation occurs after crossover. Each element is examined and
* has a chance of being point-mutated with a probability given by
* the <code>mutation_rate</code>. After the<code>Chromosome</code>
* is or is not mutated, its fitness is recomputed and
* <code>total_fit</code>, <code>best_fit</code> and
* <code>roulette</code> are updated accordingly.
* <P>
* After the mutation step, the <code>population</code> is given the
* value of the <code>List</code> of mutated and crossed
* <code>Chromosome</code>s.
*
* @param threshold a <code>List</code> of <code>Chromosome</code>s to
* be crossed and mutated
*
* @see #crossover_rate
* @see #mutation_rate
* @see Chromosome#crossover(Chromosome, Chromosome, java.util.Random)
* @see Chromosome#mutate(Chromosome, java.util.Random)
*/
public void reproduction(List selected_pop)
{
int size = selected_pop.size();
int half_size = ((size + 1) / 2);
Chromosome parent1 = null;
Chromosome parent2 = null;
// reset fitness statistics
best_fit = 0;
total_fit = 0;
// crossover
for (int i = 1; i < half_size; i++)
{
if (rand.nextDouble() <= crossover_rate)
{
parent1 = (Chromosome)(selected_pop.get(i * 2));
parent2 = (Chromosome)(selected_pop.get((i * 2) - 1));
Chromosome.crossover(parent1, parent2, rand);
}
}
// mutation, and update fitness and roulette
for (int i = 0; i < size; i++)
{
parent1 = (Chromosome)(selected_pop.get(i));
if (rand.nextDouble() <= mutation_rate)
{
Chromosome.mutate(parent1, rand);
}
// update fitness information
total_fit = total_fit + parent1.get_fit();
best_fit = Math.max(best_fit, parent1.get_fit());
// update roulette
roulette[i] = total_fit;
}
// set the population to this new population
population = new Vector(selected_pop);
}
/**
* Creates a binary representation <code>boolean</code> array of
* an input <code>int</code>.
*
* This method makes a <code>boolean</code> array of a length
* specified by the <code>length</code> parameter, with the binary
* representation of the <code>number</code> parameter, where
* <code>true</code> represents one, and <code>false</code>
* represents zero. The least signifiant bits are at the start of
* the array, and if the number ends before the end of the array,
* subsequent bits are zero. If the length of the array is less
* than the number of bits needed to represent the input digit,
* the most significant bits past the length of the array are
* truncated.
*
* @param number an <code>int</code> to be encoded into binary
* @param length the length of the binary array
*
* @return a <code>boolean</code> array representation of
* the <code>number</code> parameter in binary
*/
public static boolean[] toBinary(int number, int length)
{
boolean result[] = new boolean[length];
for (int i = (length - 1); i >= 0; i--)
{
if ((number % 2) == 1)
{
result[i] = true;
}
else
{
result[i] = false;
}
number = (number / 2);
}
return result;
}
/**
* Evolves this evolution object through the given number of generations,
* printing the results of each generation to stdout and to a log file.
*
* This method is basically a glorified loop, with a lot of string
* manipulation for the print statements. Note that you can set the
* threshold parameter for the <code>selection</code> method in this
* method. It will loop and print out the results for the number of
* generations specifed by the parameter <code>generations</code>.
*
* @param generations an <code>int</code> number of generations to
* print results for
* @param log a <code>BufferedWriter</code> attached to a
* log file, for writing results to a log
*
* @throws IOException thrown if there is an error writing to
* the log file
*
* @see java.io.BufferedWriter
* @see #selection(double)
* @see #reproduction(java.util.List)
*/
public void evolve(int generations, BufferedWriter log) throws IOException
{
StringBuffer buffer = null;
double average = 0;
double threshold = 0;
// print header info to screen and file
buffer = new StringBuffer();
buffer.append("Generations: ");
buffer.append(generations);
buffer.append("\tPopulation Size: ");
buffer.append(population.size());
buffer.append("\tCrossover Rate: ");
buffer.append(crossover_rate);
buffer.append("\tMutation Rate: ");
buffer.append(mutation_rate);
System.out.println(buffer.toString());
log.write(buffer.toString() + "\n");
// make new generations
for (int i = 0; i <= generations; i++)
{
average = total_fit / (double)(population.size());
// print to screen
buffer = new StringBuffer();
buffer.append("Generation: ");
buffer.append(i);
buffer.append("\tBest Fitness: ");
buffer.append(best_fit);
buffer.append("\tAverage Fitness: ");
buffer.append(average);
System.out.println(buffer.toString());
// log to file
buffer = new StringBuffer();
buffer.append(i);
buffer.append("\t");
buffer.append(best_fit);
buffer.append("\t");
buffer.append(average);
buffer.append("\n");
log.write(buffer.toString());
// create new generation
threshold = 0;
reproduction(selection(threshold));
}
}
/**
* Execute method for <code>Evolution</code>.
*
* The syntax for running this method at the command line is included in
* the class comments for <code>Evolution</code>. This method takes an
* array of <code>String</code> arguments and, depending on the
* arguments, makes a new <code>Evolution</code> that uses either the
* number-of-ones or the binary number fitness function. It creates
* a log file, and then calls <code>evolve</code> to do the work. Any
* exception that is thrown in this process is caught, a stack trace is
* printed, and the program exits.
*
* @param args an array of <code>String</code> parameters from the
* command line
*
* @see #Evolution
*/
public static void main(String args[])
{
Evolution evolution = null;
int pop_size = 0;
int chromosome_size = 0;
int generations = 0;
double crossover_rate = 0;
double mutation_rate = 0;
BufferedWriter log = null;
int number = 0;
boolean[] binary = null;
try
{
// get command line parameters
pop_size = Integer.parseInt(args[1]);
chromosome_size = Integer.parseInt(args[2]);
generations = Integer.parseInt(args[3]);
crossover_rate = Double.parseDouble(args[4]);
mutation_rate = Double.parseDouble(args[5]);
log = new BufferedWriter(new FileWriter(args[6]));
if (args[0].equals("ones") && (args.length == 7))
{
evolution = new Evolution(pop_size, chromosome_size, crossover_rate, mutation_rate);
}
else if (args[0].equals("binary") && (args.length == 8))
{
number = Integer.parseInt(args[7]);
binary = Evolution.toBinary(number, chromosome_size);
evolution = new Evolution(pop_size, binary, crossover_rate, mutation_rate);
}
else
{
System.err.println("Usage: java Evolution ones <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile>");
System.err.println("Usage: java Evolution binary <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile> <binary_number>");
System.exit(1);
}
evolution.evolve(generations, log);
log.flush();
log.close();
}
catch (Exception e)
{
e.printStackTrace();
System.err.println("Usage: java Evolution ones <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile>");
System.err.println("Usage: java Evolution binary <population_size> <chromosome_size> <generations> <crossover_rate> <mutation_rate> <logfile> <binary_number>");
System.exit(1);
}
}
}
Chromosome.java
import java.util.*; // Random
/**
* <code>Chromosome</code> is a wrapper class for a bit vectory representing
* an individual in a population for a genetic algorithm.
*
* This class has three main functions: First, it holds the "genetic"
* information for an individual in a genetic algorithm population. This
* information takes the form of a bit vector, represented as a boolean
* array. Second, it computes and holds the fitness value for the
* individual represented by a particular instantiation of this class.
* Currently, there are two fitness functions available, which are described
* later. Finally, it provides static functions for the recombination of
* gene sequences.
*/
public class Chromosome implements Cloneable
{
/**
* the target gene sequence, if the fitness function is
* <code>binary_number</code>
*/
private boolean target[];
/**
* the bit vector representing the gene sequence
*/
private boolean genes[];
/**
* the fitness value for this <code>Chromosome</code>
*/
private int fit = 0;
/**
* Constructor for <code>Chromosomes</code> that use the
* <code>number_of_ones</code> fitness function.
*
* @param length the length of the gene sequence this
* <code>Chromosome</code> will contain
* @param rand a <code>Random</code> object
*
* @see #no_of_ones()
* @see java.util.Random
*/
public Chromosome(int length, Random rand)
{
genes = new boolean[length];
rand_sequence(rand);
// fitness = the number of ones
target = null;
fitness();
}
/**
* Constructor for <code>Chromosomes</code> that use the
* <code>binary_number</code> fitness function.
*
* @param in_target the length of the gene sequence this
* <code>Chromosome</code> will contain
* @param rand a <code>Random</code> object
*
* @see #binary_number()
* @see java.util.Random
*/
public Chromosome(boolean[] in_target, Random rand)
{
genes = new boolean[in_target.length];
rand_sequence(rand);
// fitness = closeness to a binary number
target = in_target;
fitness();
}
/**
* Returns a copy of this <code>Chromosome</code> obtained from the
* <code>clone</code> method in <code>java.lang.Object</code>.
*
* @return a new <code>Chromosome</code> object with exactly the same
* values as this <code>Chromosome</code> object
*
* @see java.lang.Object#clone()
*/
public Chromosome getCopy()
{
Chromosome copy = null;
try
{
copy = (Chromosome)(this.clone());
}
catch (Exception e)
{
e.printStackTrace();
}
return copy;
}
/**
* Returns the fitness value for this <code>Chromosome</code>.
*
* @return a non-negative <code>int</code> representing the fitness of
* this <code>Chromosome</code> object
*
* @see #fit
*/
public int get_fit()
{
return fit;
}
/**
* Prints the fitness and gene sequence of this <code>Chromosome</code>
* to stdout.
*/
public void print()
{
StringBuffer buffer = new StringBuffer();
// print fitness
buffer.append("fitness: ");
buffer.append(fit);
buffer.append("\t");
// print gene genes
buffer.append("[");
for (int i = 0; i < genes.length; i++)
{
if (genes[i])
{
buffer.append(1);
}
else
{
buffer.append(0);
}
if (i < (genes.length - 1))
{
buffer.append(" ");
}
}
buffer.append("]");
System.out.println(buffer.toString());
}
public static void crossover(Chromosome parent1, Chromosome parent2, Random rand)
{
int cross_point = rand.nextInt(parent1.genes.length);
boolean swap_buff = true;
for (int i = 0; i <= cross_point; i++)
{
swap_buff = parent1.get(i);
parent1.set(i, parent2.get(i));
parent2.set(i, swap_buff);
}
// update fitness
parent1.fitness();
parent2.fitness();
}
public static void mutate(Chromosome parent, Random rand)
{
int index = rand.nextInt(parent.genes.length);
// mutate at index
parent.set(index, !parent.get(index));
// update fitness
parent.fitness();
}
/**
* Returns the gene at <code>index</code> in <code>genes</code>.
*
* @return the <code>boolean</code> value of the gene at
* <code>index</code> in the <code>genes</code> array.
*
* @see #genes
*/
private boolean get(int index)
{
return genes[index];
}
/**
* Sets the gene at <code>index</code> in <code>genes</code>.
*
* @see #genes
*/
private void set(int index, boolean value)
{
genes[index] = value;
}
private void fitness()
{
// choose proper fitness function
if (target == null)
{
no_of_ones();
}
else
{
binary_number();
}
}
private void rand_sequence(Random rand)
{
for (int i = 0; i < genes.length; i++)
{
genes[i] = rand.nextBoolean();
}
}
private void binary_number()
{
int count = 0;
// count genes that are the same as the target
for (int i = 0; i < genes.length; i++)
{
if (genes[i] == target[i])
{
count++;
}
}
// set fitness
fit = count;
}
private void no_of_ones()
{
int count = 0;
// count genes that are true
for (int i = 0; i < genes.length; i++)
{
if (genes[i])
{
count++;
}
}
// set fitness
fit = count;
}
}