Полигоны из сети связанных точек
Учитывая массив двумерных точек (#pts x 2) и массив точек, с которыми связаны (массив #bonds x 2 int с индексами pts), как я могу эффективно вернуть массив многоугольников, образованных из связей?
Могут быть "свисающие" связи (как в левом верхнем углу изображения ниже), которые не закрывают многоугольник, и их следует игнорировать.
import numpy as np
xy = np.array([[2.72,-2.976], [2.182,-3.40207],
[-3.923,-3.463], [2.1130,4.5460], [2.3024,3.4900], [.96979,-.368],
[-2.632,3.7555], [-.5086,.06170], [.23409,-.6588], [.20225,-.9540],
[-.5267,-1.981], [-2.190,1.4710], [-4.341,3.2331], [-3.318,3.2654],
[.58510,4.1406], [.74331,2.9556], [.39622,3.6160], [-.8943,1.0643],
[-1.624,1.5259], [-1.414,3.5908], [-1.321,3.6770], [1.6148,1.0070],
[.76172,2.4627], [.76935,2.4838], [3.0322,-2.124], [1.9273,-.5527],
[-2.350,-.8412], [-3.053,-2.697], [-1.945,-2.795], [-1.905,-2.767],
[-1.904,-2.765], [-3.546,1.3208], [-2.513,1.3117], [-2.953,-.5855],
[-4.368,-.9650]])
BL= np.array([[22,23], [28,29], [8,9],
[12,31], [18,19], [31,32], [3,14],
[32,33], [24,25], [10,30], [15,23],
[5,25], [12,13], [0,24], [27,28],
[15,16], [5,8], [0,1], [11,18],
[2,27], [11,13], [33,34], [26,33],
[29,30], [7,17], [9,10], [26,30],
[17,22], [5,21], [19,20], [17,18],
[14,16], [7,26], [21,22], [3,4],
[4,15], [11,32], [6,19], [6,13],
[16,20], [27,34], [7,8], [1,9]])
2 ответа
Я не могу рассказать вам, как реализовать это с помощью numpy, но вот схема возможного алгоритма:
- Добавьте список прикрепленных облигаций к каждой точке.
- Удалите точки, к которым прикреплена только одна связь, также удалите эту связь (это оборванные связи)
- Прикрепите два булевых маркера к каждой связи, указывая, была ли связь уже добавлена к многоугольнику в одном из двух возможных направлений. Каждая связь может использоваться только в двух полигонах. Изначально установите все маркеры на false.
- Выберите любую начальную точку и повторяйте следующий шаг, пока все связи не будут использованы в обоих направлениях:
- Выберите облигацию, которая не была использована (в соответствующем направлении). Это первый край многоугольника. Из связей, прикрепленных к конечной точке выбранной, выберите ту, которая имеет минимальный угол, например, против часовой стрелки. Добавьте это к многоугольнику и продолжайте, пока не вернетесь к начальной точке.
Этот алгоритм также создаст большой многоугольник, содержащий все внешние связи сети. Я думаю, вы найдете способ распознать этот и удалить его.
Для будущих читателей основная часть реализации предложения Фрэнка в numpy приведена ниже. Выделение границы следует по сути тому же алгоритму, что и обход многоугольника, за исключением использования минимальной угловой связи, а не максимальной.
def extract_polygons_lattice(xy, BL, NL, KL):
''' Extract polygons from a lattice of points.
Parameters
----------
xy : NP x 2 float array
points living on vertices of dual to triangulation
BL : Nbonds x 2 int array
Each row is a bond and contains indices of connected points
NL : NP x NN int array
Neighbor list. The ith row has neighbors of the ith particle, padded with zeros
KL : NP x NN int array
Connectivity list. The ith row has ones where ith particle is connected to NL[i,j]
Returns
----------
polygons : list
list of lists of indices of each polygon
PPC : list
list of patches for patch collection
'''
NP = len(xy)
NN = np.shape(KL)[1]
# Remove dangling bonds
# dangling bonds have one particle with only one neighbor
finished_dangles = False
while not finished_dangles:
dangles = np.where([ np.count_nonzero(row)==1 for row in KL])[0]
if len(dangles) >0:
# Make sorted bond list of dangling bonds
dpair = np.sort(np.array([ [d0, NL[d0,np.where(KL[d0]!=0)[0]] ] for d0 in dangles ]), axis=1)
# Remove those bonds from BL
BL = setdiff2d(BL,dpair.astype(BL.dtype))
print 'dpair = ', dpair
print 'ending BL = ', BL
NL, KL = BL2NLandKL(BL,NP=NP,NN=NN)
else:
finished_dangles = True
# bond markers for counterclockwise, clockwise
used = np.zeros((len(BL),2), dtype = bool)
polygons = []
finished = False
while (not finished) and len(polygons)<20:
# Check if all bond markers are used in order A-->B
todoAB = np.where(~used[:,0])[0]
if len(todoAB) > 0:
bond = BL[todoAB[0]]
# bb will be list of polygon indices
# Start with orientation going from bond[0] to bond[1]
nxt = bond[1]
bb = [ bond[0], nxt ]
dmyi = 1
# as long as we haven't completed the full outer polygon, add next index
while nxt != bond[0]:
n_tmp = NL[ nxt, np.argwhere(KL[nxt]).ravel()]
# Exclude previous boundary particle from the neighbors array, unless its the only one
# (It cannot be the only one, if we removed dangling bonds)
if len(n_tmp) == 1:
'''The bond is a lone bond, not part of a triangle.'''
neighbors = n_tmp
else:
neighbors = np.delete(n_tmp, np.where(n_tmp == bb[dmyi-1])[0])
angles = np.mod( np.arctan2(xy[neighbors,1]-xy[nxt,1],xy[neighbors,0]-xy[nxt,0]).ravel() \
- np.arctan2( xy[bb[dmyi-1],1]-xy[nxt,1], xy[bb[dmyi-1],0]-xy[nxt,0] ).ravel(), 2*np.pi)
nxt = neighbors[angles == max(angles)][0]
bb.append( nxt )
# Now mark the current bond as used
thisbond = [bb[dmyi-1], bb[dmyi]]
# Get index of used matching thisbond
mark_used = np.where((BL == thisbond).all(axis=1))
if len(mark_used)>0:
#print 'marking bond [', thisbond, '] as used'
used[mark_used,0] = True
else:
# Used this bond in reverse order
used[mark_used,1] = True
dmyi += 1
polygons.append(bb)
else:
# Check for remaining bonds unused in reverse order (B-->A)
todoBA = np.where(~used[:,1])[0]
if len(todoBA) >0:
bond = BL[todoBA[0]]
# bb will be list of polygon indices
# Start with orientation going from bond[0] to bond[1]
nxt = bond[0]
bb = [ bond[1], nxt ]
dmyi = 1
# as long as we haven't completed the full outer polygon, add nextIND
while nxt != bond[1]:
n_tmp = NL[ nxt, np.argwhere(KL[nxt]).ravel()]
# Exclude previous boundary particle from the neighbors array, unless its the only one
# (It cannot be the only one, if we removed dangling bonds)
if len(n_tmp) == 1:
'''The bond is a lone bond, not part of a triangle.'''
neighbors = n_tmp
else:
neighbors = np.delete(n_tmp, np.where(n_tmp == bb[dmyi-1])[0])
angles = np.mod( np.arctan2(xy[neighbors,1]-xy[nxt,1],xy[neighbors,0]-xy[nxt,0]).ravel() \
- np.arctan2( xy[bb[dmyi-1],1]-xy[nxt,1], xy[bb[dmyi-1],0]-xy[nxt,0] ).ravel(), 2*np.pi)
nxt = neighbors[angles == max(angles)][0]
bb.append( nxt )
# Now mark the current bond as used --> note the inversion of the bond order to match BL
thisbond = [bb[dmyi], bb[dmyi-1]]
# Get index of used matching [bb[dmyi-1],nxt]
mark_used = np.where((BL == thisbond).all(axis=1))
if len(mark_used)>0:
used[mark_used,1] = True
dmyi += 1
polygons.append(bb)
else:
# All bonds have been accounted for
finished = True
# Check for duplicates (up to cyclic permutations) in polygons
# Note that we need to ignore the last element of each polygon (which is also starting pt)
keep = np.ones(len(polygons),dtype=bool)
for ii in range(len(polygons)):
polyg = polygons[ii]
for p2 in polygons[ii+1:]:
if is_cyclic_permutation(polyg[:-1],p2[:-1]):
keep[ii] = False
polygons = [polygons[i] for i in np.where(keep)[0]]
# Remove the polygon which is the entire lattice boundary, except dangling bonds
boundary = extract_boundary_from_NL(xy,NL,KL)
print 'boundary = ', boundary
keep = np.ones(len(polygons),dtype=bool)
for ii in range(len(polygons)):
polyg = polygons[ii]
if is_cyclic_permutation(polyg[:-1],boundary.tolist()):
keep[ii] = False
elif is_cyclic_permutation(polyg[:-1],boundary[::-1].tolist()):
keep[ii] = False
polygons = [polygons[i] for i in np.where(keep)[0]]
# Prepare a polygon patch collection
PPC = []
for polyINDs in polygons:
pp = Path(xy[polyINDs],closed=True)
ppp = patches.PathPatch(pp, lw=2)
PPC.append(ppp)
return polygons, PPC