dplyr обобщить с помощью промежуточных итогов

Одна из замечательных особенностей сводных таблиц в Excel заключается в том, что они предоставляют промежуточные итоги автоматически. Во-первых, я хотел бы знать, есть ли в dplyr что-нибудь, что может сделать это. Если нет, то как проще всего это сделать?

В приведенном ниже примере я показываю среднее смещение по количеству цилиндров и карбюраторов. Для каждой группы цилиндров (4,6,8) я хотел бы увидеть среднее смещение для группы (или общее смещение, или любую другую сводную статистику).

library(dplyr)
mtcars %>% group_by(cyl,carb) %>% summarize(mean(disp))

  cyl carb mean(disp)
1   4    1      91.38
2   4    2     116.60
3   6    1     241.50
4   6    4     163.80
5   6    6     145.00
6   8    2     345.50
7   8    3     275.80
8   8    4     405.50
9   8    8     301.00

6 ответов

Решение

data.table Это очень неуклюже, но это один из способов:

library(data.table)
DT <- data.table(mtcars)
rbind(
  DT[,.(mean(disp)),          by=.(cyl,carb)],
  DT[,.(mean(disp), carb=NA), by=.(cyl) ],
  DT[,.(mean(disp), cyl=NA),  by=.(carb)]
)[order(cyl,carb)]

Это дает

    cyl carb       V1
 1:   4    1  91.3800
 2:   4    2 116.6000
 3:   4   NA 105.1364
 4:   6    1 241.5000
 5:   6    4 163.8000
 6:   6    6 145.0000
 7:   6   NA 183.3143
 8:   8    2 345.5000
 9:   8    3 275.8000
10:   8    4 405.5000
11:   8    8 301.0000
12:   8   NA 353.1000
13:  NA    1 134.2714
14:  NA    2 208.1600
15:  NA    3 275.8000
16:  NA    4 308.8200
17:  NA    6 145.0000
18:  NA    8 301.0000

Я бы предпочел увидеть результаты в чем-то вроде R table, но не знаю каких-либо функций для этого.


dplyr @akrun нашел этот аналогичный код

bind_rows(
  mtcars %>% 
    group_by(cyl, carb) %>% 
    summarise(Mean= mean(disp)), 
  mtcars %>% 
    group_by(cyl) %>% 
    summarise(carb=NA, Mean=mean(disp)), 
  mtcars %>% 
    group_by(carb) %>% 
    summarise(cyl=NA, Mean=mean(disp))
) %>% arrange(cyl, carb)

Мы могли бы обернуть повторяющиеся операции в функцию

library(lazyeval)
f1 <- function(df, grp, Var, func){
  FUN <- match.fun(func)
   df %>% 
     group_by_(.dots=grp) %>%
     summarise_(interp(~FUN(v), v=as.name(Var)))
  }

 m1 <- f1(mtcars, c('carb', 'cyl'), 'disp', 'mean')
 m2 <- f1(mtcars, 'carb', 'disp', 'mean')
 m3 <- f1(mtcars, 'cyl', 'disp', 'mean')

 bind_rows(list(m1, m2, m3)) %>%
              arrange(cyl, carb) %>%
              rename(Mean=`FUN(disp)`)
   carb cyl     Mean
1     1   4  91.3800
2     2   4 116.6000
3    NA   4 105.1364
4     1   6 241.5000
5     4   6 163.8000
6     6   6 145.0000
7    NA   6 183.3143
8     2   8 345.5000
9     3   8 275.8000
10    4   8 405.5000
11    8   8 301.0000
12   NA   8 353.1000
13    1  NA 134.2714
14    2  NA 208.1600
15    3  NA 275.8000
16    4  NA 308.8200
17    6  NA 145.0000
18    8  NA 301.0000

Любой из этих вариантов можно сделать немного менее уродливым с помощью data.table's rbindlist с fill:

rbindlist(list(
  mtcars %>% group_by(cyl) %>% summarise(mean(disp)),
  mtcars %>% group_by(carb) %>% summarise(mean(disp)),
  mtcars %>% group_by(cyl,carb) %>% summarise(mean(disp))
),fill=TRUE) %>% arrange(cyl,carb)

rbindlist(list(
  DT[,mean(disp),by=.(cyl,carb)],
  DT[,mean(disp),by=.(cyl)],
  DT[,mean(disp),by=.(carb)]
),fill=TRUE)[order(cyl,carb)]

Также возможно, просто объединяя результаты двух групп:

cyl_carb <- mtcars %>% group_by(cyl,carb) %>% summarize(mean(disp))
cyl <- mtcars %>% group_by(cyl) %>% summarize(mean(disp))
joined <- full_join(cyl_carb, cyl)
result <- arrange(joined, cyl)
result

дает:

Source: local data frame [12 x 3]
Groups: cyl [3]

     cyl  carb mean(disp)
   (dbl) (dbl)      (dbl)
1      4     1    91.3800
2      4     2   116.6000
3      4    NA   105.1364
4      6     1   241.5000
5      6     4   163.8000
6      6     6   145.0000
7      6    NA   183.3143
8      8     2   345.5000
9      8     3   275.8000
10     8     4   405.5000
11     8     8   301.0000
12     8    NA   353.1000

или с дополнительным столбцом:

cyl_carb <- mtcars %>% group_by(cyl,carb) %>% summarize(mean(disp))
cyl <- mtcars %>% group_by(cyl) %>% summarize(mean.cyl = mean(disp))
joined <- full_join(cyl_carb, cyl)
joined

дает:

Source: local data frame [9 x 4]
Groups: cyl [?]

    cyl  carb mean(disp) mean.cyl
  (dbl) (dbl)      (dbl)    (dbl)
1     4     1      91.38 105.1364
2     4     2     116.60 105.1364
3     6     1     241.50 183.3143
4     6     4     163.80 183.3143
5     6     6     145.00 183.3143
6     8     2     345.50 353.1000
7     8     3     275.80 353.1000
8     8     4     405.50 353.1000
9     8     8     301.00 353.1000

Что-то похожее table с addmargins (хотя на самом деле data.frame)

library(dplyr)
library(reshape2)
out <- bind_cols(
    mtcars %>% group_by(cyl, carb) %>%
      summarise(mu = mean(disp)) %>%
      dcast(cyl ~ carb),
    (mtcars %>% group_by(cyl) %>% summarise(Total=mean(disp)))[,2]
)

margin <- t((mtcars %>% group_by(carb) %>% summarise(Total=mean(disp)))[,2])
rbind(out, c(NA, margin, mean(mtcars$disp))) %>%
  `rownames<-`(c(paste("cyl", c(4,6,8)), "Total"))  # add some row names
#      cyl        1      2     3      4   6   8    Total
# cyl 4   4  91.3800 116.60    NA     NA  NA  NA 105.1364
# cyl 6   6 241.5000     NA    NA 163.80 145  NA 183.3143
# cyl 8   8       NA 345.50 275.8 405.50  NA 301 353.1000
# Total  NA 134.2714 208.16 275.8 308.82 145 301 230.7219

Нижний ряд - поля столбцов, столбцы с именами 1:8 - углеводы, а Total - поляризованные поля.

Вот простой однострочник, создающий поля в рамках data_frame:

library(plyr)
library(dplyr)

# Margins without labels
mtcars %>% 
  group_by(cyl,carb) %>% 
  summarize(Mean_Disp=mean(disp)) %>% 
  do(plyr::rbind.fill(., data_frame(cyl=first(.$cyl), Mean_Disp=sum(.$Mean_Disp, na.rm=T))))

выход:

Source: local data frame [12 x 3]
Groups: cyl [3]

     cyl  carb Mean_Disp
   <dbl> <dbl>     <dbl>
1      4     1     91.38
2      4     2    116.60
3      4    NA    207.98
4      6     1    241.50
5      6     4    163.80
6      6     6    145.00
7      6    NA    550.30
8      8     2    345.50
9      8     3    275.80
10     8     4    405.50
11     8     8    301.00
12     8    NA   1327.80

Вы также можете добавить ярлыки для сводной статистики, например:

mtcars %>% 
  group_by(cyl,carb) %>% 
  summarize(Mean_Disp=mean(disp)) %>% 
  do(plyr::rbind.fill(., data_frame(cyl=first(.$cyl), carb=c("Total", "Mean"), Mean_Disp=c(sum(.$Mean_Disp, na.rm=T), mean(.$Mean_Disp, na.rm=T)))))

выход:

Source: local data frame [15 x 3]
Groups: cyl [3]

     cyl  carb Mean_Disp
   <dbl> <chr>     <dbl>
1      4     1     91.38
2      4     2    116.60
3      4 Total    207.98
4      4  Mean    103.99
5      6     1    241.50
6      6     4    163.80
7      6     6    145.00
8      6 Total    550.30
9      6  Mean    183.43
10     8     2    345.50
11     8     3    275.80
12     8     4    405.50
13     8     8    301.00
14     8 Total   1327.80
15     8  Mean    331.95

С участием data.table версия выше v1.11

library(data.table)

cubed <- cube(
  as.data.table(mtcars),
  .(`mean(disp)` = mean(disp)),
  by = c("cyl", "carb")
)
#>     cyl carb mean(disp)
#>  1:   6    4   163.8000
#>  2:   4    1    91.3800
#>  3:   6    1   241.5000
#>  4:   8    2   345.5000
#>  5:   8    4   405.5000
#>  6:   4    2   116.6000
#>  7:   8    3   275.8000
#>  8:   6    6   145.0000
#>  9:   8    8   301.0000
#> 10:   6   NA   183.3143
#> 11:   4   NA   105.1364
#> 12:   8   NA   353.1000
#> 13:  NA    4   308.8200
#> 14:  NA    1   134.2714
#> 15:  NA    2   208.1600
#> 16:  NA    3   275.8000
#> 17:  NA    6   145.0000
#> 18:  NA    8   301.0000
#> 19:  NA   NA   230.7219
res <- dcast(
  cubed, 
  cyl ~ carb,  
  value.var = "mean(disp)"
)
#>    cyl       NA        1      2     3      4   6   8
#> 1:  NA 230.7219 134.2714 208.16 275.8 308.82 145 301
#> 2:   4 105.1364  91.3800 116.60    NA     NA  NA  NA
#> 3:   6 183.3143 241.5000     NA    NA 163.80 145  NA
#> 4:   8 353.1000       NA 345.50 275.8 405.50  NA 301

Создано 20.02.2020 пакетом REPEX (v0.3.0)

Источник: https://jozef.io/r912-datatable-grouping-sets/


library(kableExtra)

options(knitr.kable.NA = "")

res <- as.data.frame(res)
names(res)[2] <- "overall"
res[1, 1] <- "overall"
x <- kable(res, "html") 
x <- kable_styling(x, "striped") 
add_header_above(x, c(" " = 1, "carb" = ncol(res) - 1))

Я знаю, что это может быть не очень элегантное решение, но я надеюсь, что оно все равно поможет:

p <-mtcars %>% group_by(cyl,carb) 
p$cyl <- as.factor(p$cyl)
average_disp <- sapply(1:length(levels(p$cyl)), function(x)mean(subset(p,p$cyl==levels(p$cyl)[x])$disp))
df <- data.frame(levels(p$cyl),average_disp)
colnames(df)[1]<-"cyl"

#> df
#  cyl average_disp
#1   4     105.1364
#2   6     183.3143
#3   8     353.1000

(Изменить: после незначительного изменения в определении p теперь это дает те же результаты, что и решение @Frank's и @akrun)

Вы можете использовать эту обертку вокруг ddply, который применяется ddply за каждый возможный запас и rbinds результаты с его обычным выходом.

Чтобы выделить все факторы группировки:

mtcars %>% ddplym(.variables = .(cyl, carb), .fun = summarise, mean(disp))

Чтобы изолировать над carb только:

mtcars %>% ddplym(
  .variables = .(carb),
  .fun = function(data) data %>% group_by(cyl) %>% summarise(mean(disp)))

Упаковочный:

require(plyr)
require(dplyr)

ddplym <- function(.data, .variables, .fun, ..., .margin = TRUE, .margin_name = '(all)') {
  if (.margin) {
    df <- .ddplym(.data, .variables, .fun, ..., .margin_name = .margin_name)
  } else {
    df <- ddply(.data, .variables, .fun, ...)
    if (.variables %>% length == 0) {
      df$.id <- NULL
    }
  }

  return(df)
}

.ddplym <- function(.data,
                    .variables,
                    .fun,
                    ...,
                    .margin_name = '(all)'
) {

  .variables <- as.quoted(.variables)

  n <- length(.variables)

  var_combn_idx <- lapply(0:n, function(x) {
    combn(1:n, n - x) %>% alply(2, c)
  }) %>%
    unlist(recursive = FALSE, use.names = FALSE)

  data_list <- lapply(var_combn_idx, function(x) {
    data <- ddply(.data, .variables[x], .fun, ...)

    # drop '.id' column created when no variables to split by specified
    if (!length(.variables[x]))
      data <- data[, -1, drop = FALSE]

    return(data)
  })

  # workaround for NULL .variables
  if (unlist(.variables) %>% is.null && names(.variables) %>% is.null) {
    data_list <- data_list[1]
  } else if (unlist(.variables) %>% is.null) {
    data_list <- data_list[2]
  }

  if (length(data_list) > 1) {
    data_list <- lapply(data_list, function(data)
      rbind_pre(
        data = data,
        colnames = colnames(data_list[[1]]),
        fill = .margin_name
      )) 
  }

  Reduce(rbind, data_list)
}

rbind_pre <- function(data, colnames, fill = NA) {
  colnames_fill <- setdiff(colnames, colnames(data))
  data_fill <- matrix(fill,
                      nrow = nrow(data),
                      ncol = length(colnames_fill)) %>%
    as.data.frame %>% setNames(colnames_fill)
  cbind(data, data_fill)[, colnames]
}

Имея такую ​​же проблему, я работаю над функцией, которая, надеюсь, решит эту проблему (см. https://github.com/jrf1111/TCCD/blob/dev/R/with_subtotals.R). Он все еще находится на стадии разработки, но делает именно то, что вы ищете.

mtcars %>% 
group_by(cyl, carb) %>% 
with_subtotals() %>% 
summarize(mean(disp))

# A tibble: 19 x 3
# Groups:   cyl [5]
   cyl      carb     `mean(disp)`
   <chr>    <chr>           <dbl>
 1 4        1                91.4
 2 4        2               117. 
 3 4        subtotal        105. 
 4 6        1               242. 
 5 6        4               164. 
 6 6        6               145  
 7 6        subtotal        183. 
 8 8        2               346. 
 9 8        3               276. 
10 8        4               406. 
11 8        8               301  
12 8        subtotal        353. 
13 subtotal 1               134. 
14 subtotal 2               208. 
15 subtotal 3               276. 
16 subtotal 4               309. 
17 subtotal 6               145  
18 subtotal 8               301  
19 total    total           231. 

Разделяю свой подход к этому (если он вообще полезен). Такой подход позволяет очень легко добавлять индивидуальные промежуточные итоги и итоги.

data = data.frame( thing1=sprintf("group %i",trunc(runif(200,0,5))),
                   thing2=sprintf("type %i",trunc(runif(200,0,5))),
                   value=rnorm(200,0,1) )
data %>%
  group_by( thing1, thing2 ) %>% 
  summarise( sum=sum(value),
             count=n() ) %>%
  ungroup() %>%
  bind_rows(.,
            identity(.) %>%
              group_by(thing1) %>%
              summarise( aggregation="sub total",
                         sum=sum(sum),
                         count=sum(count) ) %>%
              ungroup(),
            identity(.) %>%
              summarise( aggregation="total",
                         sum=sum(sum),
                         count=sum(count) ) %>%
              ungroup() ) %>%
  arrange( thing1, thing2, aggregation ) %>%
  select( aggregation, everything() )

Попробовав долго и упорно, очень похожие вопросы, я обнаружил, что data.table предлагает самое простое и быстрое решение, которое подходит именно для этой цели

data.table::cube(
             data.table::as.data.table(mtcars),
             .(mean_disp = mean(disp)),
             by = c("cyl","carb"))

   cyl carb mean_disp
 1:   6    4  163.8000
 2:   4    1   91.3800
 3:   6    1  241.5000
 4:   8    2  345.5000
 5:   8    4  405.5000
 6:   4    2  116.6000
 7:   8    3  275.8000
 8:   6    6  145.0000
 9:   8    8  301.0000
10:   6   NA  183.3143
11:   4   NA  105.1364
12:   8   NA  353.1000
13:  NA    4  308.8200
14:  NA    1  134.2714
15:  NA    2  208.1600
16:  NA    3  275.8000
17:  NA    6  145.0000
18:  NA    8  301.0000
19:  NA   NA  230.7219

В NAзаписи - это промежуточные итоги, которые вы ищете; например, в строке 10183.31результат - среднее значение для всех 6 цилиндров. Последний ряд с двойнымNA тот, у которого есть общее среднее значение.

Оттуда вы можете легко обернуть результат as_tibble() прыгнуть обратно в dplyr мир семантики.

Другие вопросы по тегам