Ошибка при переводе модели openBUGS в JAGS
Я хочу оценить беты для модели регрессии Кокса, используя код OpenBUGS. Я изменил пример кода, так как в примере он имеет только одну бета-версию, мне нужно различное количество бета-версий, в зависимости от моделей, которыми я его кормлю.
Это моя модель openBUGS; это работает как ожидалось:
bugsmodel <- function(){
# Set up data
for(i in 1:N) {
for(j in 1:T) {
Y[i,j] <- step(obs.t[i] - t[j] + eps)
dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i]
}
}
# Model
for(i in 1:N){
betax[i,1] <- 0
for(k in 2:p+1){
betax[i,k] <- betax[i,k-1] + beta[k-1]*x[i,k-1]
}
}
for(j in 1:T) {
for(i in 1:N) {
dN[i, j] ~ dpois(Idt[i, j]) # Likelihood
Idt[i, j] <- Y[i, j] * exp(betax[i,p+1]) * dL0[j] # Intensity
}
dL0[j] ~ dgamma(mu[j], c)
mu[j] <- dL0.star[j] * c # prior mean hazard
}
c <- 0.001
r <- 0.1
for (j in 1 : T) {
dL0.star[j] <- r * (t[j + 1] - t[j])
}
for(k in 1:p){
beta[k] ~ dnorm(0.0,0.000001)
}
}
Тем не менее, я изменил его синтаксис для запуска в JAGS, он дает мне ошибку переопределения:
model_jags <- "model{
# Set up data
for(i in 1:N) {
for(j in 1:T) {
Y[i,j] <- step(obs.t[i] - t[j] + eps)
dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i]
}
}
# Model
for(i in 1:N){
betax[i,1] <- 0
for(k in 2:p+1){
betax[i,k] <- betax[i,k-1] + beta[k-1]*x[i,k-1]
}
}
for(j in 1:T) {
for(i in 1:N) {
dN[i, j] ~ dpois(Idt[i, j]) # Likelihood
Idt[i, j] <- Y[i, j] * exp(betax[i,p+1]) * dL0[j] # Intensity
}
dL0[j] ~ dgamma(mu[j], c)
mu[j] <- dL0.star[j] * c # prior mean hazard
}
c <- 0.001
r <- 0.1
for (j in 1 : T) {
dL0.star[j] <- r * (t[j + 1] - t[j])
}
for(k in 1:p){
beta[k] ~ dnorm(0.0,0.000001)
}
}"
код тестирования:
n = 100
round=2
x1 = rbinom(n,size=1,prob=0.5)
x2 = rbinom(n,size=1,prob=0.5)
x3 = rbinom(n,size=1,prob=0.5)
x = t(rbind(x1,x2,x3))
censortime = runif(n,0,1)
survtime= rexp(n,rate=exp(x1+2*x2+3*x3))
survtime = round(survtime,digits=round)
event = as.numeric(censortime>survtime)
y = survtime;
y[event==0] = censortime[event==0]
t=sort(unique(y[event==1]))
t=c(t,max(censortime))
bigt=length(t)-1
#####################################
model=c(1,1,1)
x <- x[,model==1]
p <- sum(model) # models have betas with 1
params <- c("beta","dL0")
data <- list(x=x,obs.t=y,t=t,T=bigt,N=n,fail=event,eps=1E-10,p=p)
inits <- function(){list( beta = rep(0,p), dL0 = rep(0.0001,bigt))}
jags <- jags.model(textConnection(model_jags),
data = data,
n.chains = 1,
n.adapt = 100)
1 ответ
Вам нужно две модификации кода вашей модели:
1) Преобразование данных в верхней части должно быть выполнено в отдельном блоке data{} в JAGS (это дает ошибку о переопределении узла dN).
2) Индекс цикла:
for(k in 2:p+1){
То же, что (из-за приоритета оператора):
for(k in (2:p)+1){
Но я думаю, это должно быть:
for(k in 2:(p+1)){
С этими двумя модификациями следующий код модели работает для меня с вашим тестовым кодом:
model_jags <- "
data{
# Set up data
for(i in 1:N) {
for(j in 1:T) {
Y[i,j] <- step(obs.t[i] - t[j] + eps)
dN[i, j] <- Y[i, j] * step(t[j + 1] - obs.t[i] - eps) * fail[i]
}
}
}
# Model
model{
for(i in 1:N){
betax[i,1] <- 0
for(k in 2:(p+1)){
betax[i,k] <- betax[i,k-1] + beta[k-1]*x[i,k-1]
}
}
for(j in 1:T) {
for(i in 1:N) {
dN[i, j] ~ dpois(Idt[i, j]) # Likelihood
Idt[i, j] <- Y[i, j] * exp(betax[i,p+1]) * dL0[j] # Intensity
}
dL0[j] ~ dgamma(mu[j], c)
mu[j] <- dL0.star[j] * c # prior mean hazard
}
c <- 0.001
r <- 0.1
for (j in 1 : T) {
dL0.star[j] <- r * (t[j + 1] - t[j])
}
for(k in 1:p){
beta[k] ~ dnorm(0.0,0.000001)
}
}"
Надеюсь, это поможет,
Matt