Разница между posthoc.kruskal.dunn.test и dunn.test

В настоящее время я ищу способ выполнить тест Данна в R. При этом я наткнулся на несколько функций, в которых реализован тест Данна.

library(dunn.test)
library(PMCMR)

dunn.test(x=mtcars[,"wt"], g= mtcars[,"cyl"])$P.adjusted

posthoc.kruskal.dunn.test(x=mtcars[,"wt"], g=mtcars[,"cyl"], p.adjust.method="bonferroni")

Результаты, однако, совершенно разные. У кого-нибудь есть опыт работы с пакетом dunn.test? Я хочу использовать тест Даннса в качестве постхоккейного теста после теста Крускала Уоллиса.

1 ответ

Они используют несколько разных пресетов. Вы можете получить идентичные результаты, применив исправление множественного тестирования и используя альтернативные значения p формата для dunn.test:

dunn.test(x=mtcars[,"wt"], g= mtcars[,"cyl"], method = 'bonferroni', altp = TRUE)$P.adjusted
Kruskal-Wallis rank sum test

data: x and group
Kruskal-Wallis chi-squared = 22.8067, df = 2, p-value = 0


                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |          4          6
---------+----------------------
       6 |  -1.836259
         |     0.1990
         |
       8 |  -4.755941  -2.221605
         |    0.0000*     0.0789

alpha = 0.05
Reject Ho if p <= alpha
posthoc.kruskal.dunn.test(x=mtcars[,"wt"], g=mtcars[,"cyl"], p.adjust.method="bonferroni")
Pairwise comparisons using Dunn's-test for multiple   
                         comparisons of independent samples 

data:  mtcars[, "wt"] and mtcars[, "cyl"] 

  4       6    
6 0.199   -    
8 5.9e-06 0.079

P value adjustment method: bonferroni
Другие вопросы по тегам