Тест линейной независимости Гаусса для двоичных векторов
Я запрограммировал версию исключения Гаусса, чтобы проверить линейную независимость набора двоичных векторов. Он вводит матрицу (mxn) для оценки и возврата:
- True (линейно-независимый): нулевая строка не найдена.
- False (линейная зависимость): если последняя строка равна нулю.
Кажется, всегда хорошо работает, или, по крайней мере, почти. Я обнаружил, что это не работает, когда матрица имеет два дублированных вектора в последней строке:
std::vector<std::vector<int>> A = {
{1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1 },
{0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0 },
{0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0 },
{0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0}, // <---- duplicated
{0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0},}; // <---- duplicated
gaussianElimination_binary(A);
Функция говорит, что матрица является "линейно-независимой", потому что нулевая строка не была найдена, и в действительности она есть. Но при отладке я обнаружил, что в какой-то момент строка становится равной нулю, но после некоторых операций со строками она возвращается к "нормальной".
Я дважды проверил код, и единственным способом заставить его работать было возвращение "false" также, когда "нулевая строка" обнаружена до конца процесса, точнее, во время операций со строками:
// perform XOR in "k-th" row against "row-th" row
for (int k = 0; k <= max_row; ++k) //k=col_pivot?
{
if ( (k != row) )
{
int check_zero_row = 0; // <---- APPLIED PATCH
for (std::size_t j = 0; j <= max_col; j++) {
B[k][j] = B[k][j] ^ B[row][j];
check_zero_row = check_zero_row | B[k][j];
}
if (check_zero_row == 0 ) // <---- APPLIED PATCH
{
return false;
}
}
}
Я хочу знать, правильно ли это, или я просто "исправляю" плохой код.
Спасибо!
Здесь ниже полный код:
#include vector
bool gaussianElimination_binary(std::vector<std::vector<int>> &A) {
std::vector<std::vector<int>> B = A;
std::size_t max_col = B[0].size() - 1; //cols
std::size_t max_row = B.size() -1 ; //rows
std::size_t col_pivot = 0;
//perform "gaussian" elimination
for (std::size_t row = 0; row <= max_row; ++row) //for every column
{
if (col_pivot > max_col)
break;
// Search for first row having "1" in column "lead"
std::size_t i = row; //Start searching from row "i"=row
while (B[i][col_pivot] == 0)
{
++i;
if (i > max_row) // no "1" was found across rows
{
i = row; // set "i" back to "row"
++col_pivot; // move to next column
if (col_pivot > max_col) //if no more columns
break;
}
}
// swap "i" and "row" rows
if ((0 <= i) && (i <= max_row) && (0 <= row) && (row <= max_row)) {
for (std::size_t col = 0; col <= max_col; ++col) {
std::swap(B[i][col], B[row][col]);
}
}
// perform XOR in "k-th" row against "row-th" row
for (int k = 0; k <= max_row; ++k) //k=col_pivot?
{
if ( (k != row) )
{
int check_zero_row = 0;
for (std::size_t j = 0; j <= max_col; j++) {
B[k][j] = B[k][j] ^ B[row][j];
check_zero_row = check_zero_row | B[k][j];
}
if (check_zero_row == 0 )
{
return false;
}
}
}
}
return true;
}