Как обусловить конечное скрытое состояние кодера на входах динамического декодера RNN с ScheduledOutputTrainingHelper?

Я пытаюсь использовать тензор потока для кодирования RDD-кодера и декодера и с последовательными входами различной длины, поэтому надеюсь, что и кодер, и декодер могут быть динамическими. Кроме того, входные данные декодера обусловлены конечными скрытыми состояниями кодера (вектор контекста), который аналогичен соответствующему документу ( см. Рисунок a на стр. 3.). Во время обучения декодер пытается сделать полный вывод с подачей предыдущих выходов и вектора контекста в качестве входных данных. на каждом шагу.

import tensorflow as tf
import copy
import math
from tensorflow.python.layers.core import Dense
class RNNEncoder_Decoder(object):

def __init__(self,input_dim,
             context_dim,output_dim,hidden_dim,
             layers_stacked_count,learning_rate):

    self.graph = tf.get_default_graph()
    self.input_dim = input_dim
    self.output_dim = output_dim
    self.context_dim = context_dim
    self.hidden_dim = hidden_dim
    self.layers_stacked_count = layers_stacked_count
    self.learning_rate = learning_rate
    self.sampling_probability = tf.constant(dtype=tf.float32,value=1.0)

    # [batch_size,sequence_length,input_dimension]
    self.enc_inp = tf.placeholder(tf.float32, [None,None,self.input_dim], name='encoder_inputs')
    self.expected_out = tf.placeholder(tf.float32, [None,None,self.input_dim], name='expected_outs')
    # fullly inference during trianing
    self.dec_inp = tf.zeros_like(self.expected_out,dtype=tf.float32,name='decoder_inputs')

    seq_length = tf.reduce_sum(tf.sign(tf.reduce_max(tf.abs(self.enc_inp), 2)), 1)
    self.seq_length = tf.cast(seq_length, tf.int32)

    with tf.variable_scope('RNNEncoderDecoder'):
        with tf.variable_scope("Enocder") as encoder_varscope:
            # create encoder LSTM cell
            encoder_cells = []
            for i in range(self.layers_stacked_count):
                with tf.variable_scope('EncoderCell_{}'.format(i)):
                    encoder_cells.append(tf.nn.rnn_cell.LSTMCell(self.hidden_dim,
                                                         use_peepholes=True))
            self.encoder_cell = tf.nn.rnn_cell.MultiRNNCell(encoder_cells)

            # ruuning dynamic rnn encoder                
            _, enc_state = tf.nn.dynamic_rnn(cell = self.encoder_cell,
                                             initial_state=None,
                                             dtype=tf.float32,
                                             inputs = self.enc_inp,
                                             sequence_length = self.seq_length
                                            )

            # extract top layer hidden state as feature representation
            self.context_vector = enc_state[-1].h

            cell_state0 = tf.zeros_like(enc_state[0].c,dtype=tf.float32)
            hidden_state0 = tf.zeros_like(enc_state[0].h,dtype=tf.float32)

            dec_init_state = (enc_state[1], # pass the top layer state of enocder to the bottom layer of decoder
                              tf.nn.rnn_cell.LSTMStateTuple(cell_state0, hidden_state0))

            # condition extracted features on decoder inputs
            # with a shape that matches decoder inputs in all but (potentially) the final dimension. 
            # tile context vector from [batch_size,context_dim] to [batch_size,decoder_sequence_length,context_dim]
            context_vector_shape = tf.shape(self.context_vector)
            context_vector_reshaped = tf.reshape(self.context_vector, 
                                                 [context_vector_shape[0], 1, context_vector_shape[1]]
                                                )
            enc_inp_shape = tf.shape(self.enc_inp)
            self.auxiliary_inputs = tf.tile(context_vector_reshaped,
                                       multiples=[1,enc_inp_shape[1],1]
                                      )

        with tf.variable_scope("Deocder") as decoder_varscope:
            # create decoder LSTM cell
            decoder_cells = []
            for i in range(self.layers_stacked_count):
                with tf.variable_scope('DecoderCell_{}'.format(i)):
                    decoder_cells.append(tf.nn.rnn_cell.LSTMCell(self.hidden_dim,
                                                         use_peepholes=True))
            self.decoder_cell = tf.nn.rnn_cell.MultiRNNCell(decoder_cells)

            dec_out_dense = Dense(units = self.output_dim,
                                  activation = None,
                                  use_bias = False,
                                  kernel_initializer = tf.truncated_normal_initializer(
                                      dtype=tf.float32,
                                      stddev = 1.0 / math.sqrt(float(self.hidden_dim))
                                  ),
                                  name = 'dec_outp_linear_projection'
                                 )

            training_helper = tf.contrib.seq2seq.ScheduledOutputTrainingHelper(
                inputs = self.dec_inp,
                sequence_length = self.seq_length,
                auxiliary_inputs = self.auxiliary_inputs, # condtional on inputs
                sampling_probability = 1.0, # for fullly inference
                name = 'feeding_conditional_input'
            )

            decoder = tf.contrib.seq2seq.BasicDecoder(
                cell = self.decoder_cell,
                helper = training_helper,
                initial_state = dec_init_state,
                output_layer = dec_out_dense
            )

            outputs, _ , final_seq_lengths = tf.contrib.seq2seq.dynamic_decode(decoder=decoder,
                                                                               impute_finished = True
                                                                              )
        self.outputs = outputs

### optimize loss part

def get_decoder_prediction(self,X,session):
    feed_dict = {
        self.enc_inp:X
    }
    feed_dict.update({self.expected_out:X})
    run = [self.outputs]
    return session.run(run,feed_dict=feed_dict)

context_dim = 32
output_dim = input_dim = 1
hidden_dim = 32
layers_stacked_count = 2
learning_rate = 0.01
test = RNNEncoder_Decoder(input_dim=input_dim,
                      context_dim=context_dim,
                      output_dim=output_dim,
                      hidden_dim=hidden_dim,
                      layers_stacked_count=layers_stacked_count,
                      learning_rate=learning_rate
                     )

Без "Additional_inputs = Self.auxiliary_inputs", он работает успешно,

Но со вспомогательной_входами = self.auxiliary_inputs я получил следующую ошибку:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-3-02522a01f0d8> in <module>()
      9                           hidden_dim=hidden_dim,
     10                           layers_stacked_count=layers_stacked_count,
---> 11                           learning_rate=learning_rate
     12                          )

<ipython-input-2-86494b8d99fa> in __init__(self, input_dim, context_dim, output_dim, hidden_dim, layers_stacked_count, learning_rate)
     98 
     99                 outputs, _ , final_seq_lengths = tf.contrib.seq2seq.dynamic_decode(decoder=decoder,
--> 100                                                                                    impute_finished = True
    101                                                                                   )
    102             self.outputs = outputs

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py in dynamic_decode(decoder, output_time_major, impute_finished, maximum_iterations, parallel_iterations, swap_memory, scope)
    284         ],
    285         parallel_iterations=parallel_iterations,
--> 286         swap_memory=swap_memory)
    287 
    288     final_outputs_ta = res[1]

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in while_loop(cond, body, loop_vars, shape_invariants, parallel_iterations, back_prop, swap_memory, name)
   2773     context = WhileContext(parallel_iterations, back_prop, swap_memory, name)
   2774     ops.add_to_collection(ops.GraphKeys.WHILE_CONTEXT, context)
-> 2775     result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
   2776     return result
   2777 

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in BuildLoop(self, pred, body, loop_vars, shape_invariants)
   2602       self.Enter()
   2603       original_body_result, exit_vars = self._BuildLoop(
-> 2604           pred, body, original_loop_vars, loop_vars, shape_invariants)
   2605     finally:
   2606       self.Exit()

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/control_flow_ops.py in _BuildLoop(self, pred, body, original_loop_vars, loop_vars, shape_invariants)
   2552         structure=original_loop_vars,
   2553         flat_sequence=vars_for_body_with_tensor_arrays)
-> 2554     body_result = body(*packed_vars_for_body)
   2555     if not nest.is_sequence(body_result):
   2556       body_result = [body_result]

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/contrib/seq2seq/python/ops/decoder.py in body(time, outputs_ta, state, inputs, finished, sequence_lengths)
    232       """
    233       (next_outputs, decoder_state, next_inputs,
--> 234        decoder_finished) = decoder.step(time, inputs, state)
    235       next_finished = math_ops.logical_or(decoder_finished, finished)
    236       if maximum_iterations is not None:

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/contrib/seq2seq/python/ops/basic_decoder.py in step(self, time, inputs, state, name)
    137     """
    138     with ops.name_scope(name, "BasicDecoderStep", (time, inputs, state)):
--> 139       cell_outputs, cell_state = self._cell(inputs, state)
    140       if self._output_layer is not None:
    141         cell_outputs = self._output_layer(cell_outputs)

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/rnn_cell_impl.py in __call__(self, inputs, state, scope)
    178       with vs.variable_scope(vs.get_variable_scope(),
    179                              custom_getter=self._rnn_get_variable):
--> 180         return super(RNNCell, self).__call__(inputs, state)
    181 
    182   def _rnn_get_variable(self, getter, *args, **kwargs):

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/layers/base.py in __call__(self, inputs, *args, **kwargs)
    448         # Check input assumptions set after layer building, e.g. input shape.
    449         self._assert_input_compatibility(inputs)
--> 450         outputs = self.call(inputs, *args, **kwargs)
    451 
    452         # Apply activity regularization.

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/rnn_cell_impl.py in call(self, inputs, state)
    936                                       [-1, cell.state_size])
    937           cur_state_pos += cell.state_size
--> 938         cur_inp, new_state = cell(cur_inp, cur_state)
    939         new_states.append(new_state)
    940 

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/rnn_cell_impl.py in __call__(self, inputs, state, scope)
    178       with vs.variable_scope(vs.get_variable_scope(),
    179                              custom_getter=self._rnn_get_variable):
--> 180         return super(RNNCell, self).__call__(inputs, state)
    181 
    182   def _rnn_get_variable(self, getter, *args, **kwargs):

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/layers/base.py in __call__(self, inputs, *args, **kwargs)
    448         # Check input assumptions set after layer building, e.g. input shape.
    449         self._assert_input_compatibility(inputs)
--> 450         outputs = self.call(inputs, *args, **kwargs)
    451 
    452         # Apply activity regularization.

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/tensorflow/python/ops/rnn_cell_impl.py in call(self, inputs, state)
    554     input_size = inputs.get_shape().with_rank(2)[1]
    555     if input_size.value is None:
--> 556       raise ValueError("Could not infer input size from inputs.get_shape()[-1]")
    557     scope = vs.get_variable_scope()
    558     with vs.variable_scope(scope, initializer=self._initializer) as unit_scope:

ValueError: Could not infer input size from inputs.get_shape()[-1]

Я только начинаю использовать tenSforflow, так что кто-нибудь может мне помочь: Это правильный способ обуславливать последнее скрытое состояние кодера на входах декодера? и почему входы декодера становятся равными None после того, как я передаю в качестве ошибки subs_inputs?

1 ответ

Просто найдите ошибку, которую я сделал:

использование "context_vector_shape" для определения формы тензора вспомогательного_входа не приведет ни к какому размеру измерения как (?,?,?), что приведет к "ValueError: Невозможно определить размер ввода из input.get_shape()[-1]",

непосредственно определите форму тензор вспомогательных_входов, так как (?,?,context_dim) решит этот вопрос.

Другие вопросы по тегам