Более эффективный весовой коэффициент Джини в Python
Согласно /questions/19458335/vesovoj-koeffitsient-dzhini-v-python/19458343#19458343, это реализация взвешенного коэффициента Джини в Python:
import numpy as np
def gini(x, weights=None):
if weights is None:
weights = np.ones_like(x)
# Calculate mean absolute deviation in two steps, for weights.
count = np.multiply.outer(weights, weights)
mad = np.abs(np.subtract.outer(x, x) * count).sum() / count.sum()
rmad = mad / np.average(x, weights=weights)
# Gini equals half the relative mean absolute deviation.
return 0.5 * rmad
Это чисто и хорошо работает для массивов среднего размера, но, как и предупреждено в первоначальном предложении ( /questions/37585065/raschet-koeffitsienta-dzhini-v-python-numpy/37585070#37585070), это O (n2). На моем компьютере это означает, что он ломается после ~20k строк:
n = 20000 # Works, 30000 fails.
gini(np.random.rand(n), np.random.rand(n))
Можно ли это настроить для работы с большими наборами данных? Мой ~150 тыс рядов.
2 ответа
Вот версия, которая намного быстрее, чем та, которую вы предоставили выше, а также использует упрощенную формулу для случая без веса, чтобы получить еще более быстрые результаты в этом случае.
def gini(x, w=None):
# The rest of the code requires numpy arrays.
x = np.asarray(x)
if w is not None:
w = np.asarray(w)
sorted_indices = np.argsort(x)
sorted_x = x[sorted_indices]
sorted_w = w[sorted_indices]
# Force float dtype to avoid overflows
cumw = np.cumsum(sorted_w, dtype=float)
cumxw = np.cumsum(sorted_x * sorted_w, dtype=float)
return (np.sum(cumxw[1:] * cumw[:-1] - cumxw[:-1] * cumw[1:]) /
(cumxw[-1] * cumw[-1]))
else:
sorted_x = np.sort(x)
n = len(x)
cumx = np.cumsum(sorted_x, dtype=float)
# The above formula, with all weights equal to 1 simplifies to:
return (n + 1 - 2 * np.sum(cumx) / cumx[-1]) / n
Вот некоторый тестовый код, чтобы проверить, что мы получаем (в основном) одинаковые результаты:
>>> x = np.random.rand(1000000)
>>> w = np.random.rand(1000000)
>>> gini_slow(x, w)
0.33376310938610521
>>> gini(x, w)
0.33376310938610382
Но скорость совсем другая
%timeit gini(x, w)
203 ms ± 3.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit gini_slow(x, w)
55.6 s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
Если вы удалите функции pandas из функции, это уже намного быстрее:
%timeit gini_slow2(x, w)
1.62 s ± 75 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Если вы хотите получить последнее снижение производительности, вы можете использовать numba или cython, но это принесет лишь несколько процентов, потому что большая часть времени уходит на сортировку.
%timeit ind = np.argsort(x); sx = x[ind]; sw = w[ind]
180 ms ± 4.82 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Адаптация StatsGini
Функция R отсюда:
import numpy as np
import pandas as pd
def gini(x, w=None):
# Array indexing requires reset indexes.
x = pd.Series(x).reset_index(drop=True)
if w is None:
w = np.ones_like(x)
w = pd.Series(w).reset_index(drop=True)
n = x.size
wxsum = sum(w * x)
wsum = sum(w)
sxw = np.argsort(x)
sx = x[sxw] * w[sxw]
sw = w[sxw]
pxi = np.cumsum(sx) / wxsum
pci = np.cumsum(sw) / wsum
g = 0.0
for i in np.arange(1, n):
g = g + pxi.iloc[i] * pci.iloc[i - 1] - pci.iloc[i] * pxi.iloc[i - 1]
return g
Это работает для больших векторов, по крайней мере, до 10 миллионов строк:
n = 1e7
gini(np.random.rand(n), np.random.rand(n)) # Takes ~15s.
Он также дает тот же результат, что и функция, представленная в вопросе, например, дает 0,2553 для этого примера:
gini(np.array([3, 1, 6, 2, 1]), np.array([4, 2, 2, 10, 1]))