Как отследить 2d точки на изображениях для 3d-реконструкции, как указано в конвейере opencv sfm?

Я пытаюсь сделать 3D реконструкцию, используя этот код из opencv. Насколько я понял, мне нужен текстовый файл с 2D точками в соответствии с заданным форматом. Мне интересно, может ли кто-нибудь помочь мне получить эти 2D точки, которые они упоминают в этой программе. У меня есть набор изображений с параметрами калибровки, но я не смог понять, как я могу отслеживать и сохранять эти 2D-точки, например, первая точка в кадре 1 - это та же точка в кадре 2 в указанном формате.

#include <opencv2/core.hpp>
#include <opencv2/sfm.hpp>
#include <opencv2/viz.hpp>
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
using namespace cv;
using namespace cv::sfm;
static void help() {
cout
  <<  "\n------------------------------------------------------------\n"
  << " This program shows the camera trajectory reconstruction capabilities\n"
  << " in the OpenCV Structure From Motion (SFM) module.\n"
  << " \n"
  << " Usage:\n"
  << "        example_sfm_trajectory_reconstruction <path_to_tracks_file> <f> <cx> <cy>\n"
  << " where: is the tracks file absolute path into your system. \n"
  << " \n"
  << "        The file must have the following format: \n"
  << "        row1 : x1 y1 x2 y2 ... x36 y36 for track 1\n"
  << "        row2 : x1 y1 x2 y2 ... x36 y36 for track 2\n"
  << "        etc\n"
  << " \n"
  << "        i.e. a row gives the 2D measured position of a point as it is tracked\n"
  << "        through frames 1 to 36.  If there is no match found in a view then x\n"
  << "        and y are -1.\n"
  << " \n"
  << "        Each row corresponds to a different point.\n"
  << " \n"
  << "        f  is the focal lenght in pixels. \n"
  << "        cx is the image principal point x coordinates in pixels. \n"
  << "        cy is the image principal point y coordinates in pixels. \n"
  << "------------------------------------------------------------------\n\n"
  << endl;
}
/* Build the following structure data
 *
 *            frame1           frame2           frameN
 *  track1 | (x11,y11) | -> | (x12,y12) | -> | (x1N,y1N) |
 *  track2 | (x21,y11) | -> | (x22,y22) | -> | (x2N,y2N) |
 *  trackN | (xN1,yN1) | -> | (xN2,yN2) | -> | (xNN,yNN) |
 *
 *
 *  In case a marker (x,y) does not appear in a frame its
 *  values will be (-1,-1).
 */
void
parser_2D_tracks(const string &_filename, std::vector<Mat> &points2d )
{
  ifstream myfile(_filename.c_str());
  if (!myfile.is_open())
  {
    cout << "Unable to read file: " << _filename << endl;
    exit(0);
  } else {
   double x, y;
string line_str;
int n_frames = 0, n_tracks = 0;
// extract data from text file
vector<vector<Vec2d> > tracks;
for ( ; getline(myfile,line_str); ++n_tracks)
{
  istringstream line(line_str);
  vector<Vec2d> track;
  for ( n_frames = 0; line >> x >> y; ++n_frames)
  {
    if ( x > 0 && y > 0)
      track.push_back(Vec2d(x,y));
    else
      track.push_back(Vec2d(-1));
  }
  tracks.push_back(track);
}
// embed data in reconstruction api format
for (int i = 0; i < n_frames; ++i)
{
  Mat_<double> frame(2, n_tracks);
  for (int j = 0; j < n_tracks; ++j)
  {
    frame(0,j) = tracks[j][i][0];
    frame(1,j) = tracks[j][i][1];
  }
  points2d.push_back(Mat(frame));
}
myfile.close();
}
} 
/* Keyboard callback to control 3D visualization
*/
bool camera_pov = false;
void keyboard_callback(const viz::KeyboardEvent &event, void* cookie)
{
     if ( event.action == 0 &&!event.symbol.compare("s") )
     camera_pov = !camera_pov;
}
/* Sample main code
*/
int main(int argc, char** argv)
{
  // Read input parameters
  if ( argc != 5 )
  {
    help();
    exit(0);
  }
  // Read 2D points from text file
  std::vector<Mat> points2d;
  parser_2D_tracks( argv[1], points2d );
  // Set the camera calibration matrix
  const double f  = atof(argv[2]),
           cx = atof(argv[3]), cy = atof(argv[4]);
  Matx33d K = Matx33d( f, 0, cx,
                   0, f, cy,
                   0, 0,  1);
  bool is_projective = true;
  vector<Mat> Rs_est, ts_est, points3d_estimated;
  reconstruct(points2d, Rs_est, ts_est, K, points3d_estimated,     is_projective);
  // Print output
  cout << "\n----------------------------\n" << endl;
  cout << "Reconstruction: " << endl;
  cout << "============================" << endl;
  cout << "Estimated 3D points: " << points3d_estimated.size() << endl;
  cout << "Estimated cameras: " << Rs_est.size() << endl;
  cout << "Refined intrinsics: " << endl << K << endl << endl;
  cout << "3D Visualization: " << endl;
  cout << "============================" << endl;
  viz::Viz3d window_est("Estimation Coordinate Frame");
         window_est.setBackgroundColor(); // black by default
         window_est.registerKeyboardCallback(&keyboard_callback);
  // Create the pointcloud
  cout << "Recovering points  ... ";
  // recover estimated points3d
  vector<Vec3f> point_cloud_est;
  for (int i = 0; i < points3d_estimated.size(); ++i)
    point_cloud_est.push_back(Vec3f(points3d_estimated[i]));
  cout << "[DONE]" << endl;
  cout << "Recovering cameras ... ";
  vector<Affine3d> path_est;
  for (size_t i = 0; i < Rs_est.size(); ++i)
    path_est.push_back(Affine3d(Rs_est[i],ts_est[i]));
  cout << "[DONE]" << endl;
  cout << "Rendering Trajectory  ... ";
  cout << endl << "Press:                       " << endl;
  cout <<         " 's' to switch the camera pov" << endl;
  cout <<         " 'q' to close the windows    " << endl;
  if ( path_est.size() > 0 )
  {
    // animated trajectory
    int idx = 0, forw = -1, n = static_cast<int>(path_est.size());
    while(!window_est.wasStopped())
    {
    for (size_t i = 0; i < point_cloud_est.size(); ++i)
  {
    Vec3d point = point_cloud_est[i];
    Affine3d point_pose(Mat::eye(3,3,CV_64F), point);
    char buffer[50];
    sprintf (buffer, "%d", static_cast<int>(i));
    viz::WCube cube_widget(Point3f(0.1,0.1,0.0), Point3f(0.0,0.0,-0.1), true, viz::Color::blue());
               cube_widget.setRenderingProperty(viz::LINE_WIDTH, 2.0);
    window_est.showWidget("Cube"+string(buffer), cube_widget, point_pose);
  }
  Affine3d cam_pose = path_est[idx];
  viz::WCameraPosition cpw(0.25); // Coordinate axes
  viz::WCameraPosition cpw_frustum(K, 0.3, viz::Color::yellow()); // Camera frustum
  if ( camera_pov )
    window_est.setViewerPose(cam_pose);
  else
  {
    // render complete trajectory
    window_est.showWidget("cameras_frames_and_lines_est", viz::WTrajectory(path_est, viz::WTrajectory::PATH, 1.0, viz::Color::green()));
    window_est.showWidget("CPW", cpw, cam_pose);
    window_est.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose);
  }
  // update trajectory index (spring effect)
  forw *= (idx==n || idx==0) ? -1: 1; idx += forw;
  // frame rate 1s
  window_est.spinOnce(1, true);
  window_est.removeAllWidgets();
    }
  }
  return 0;
}

Я был бы очень благодарен, если бы кто-то мог помочь мне через это. Спасибо.

0 ответов

Другие вопросы по тегам