Пользовательский показатель отзыва Keras на основе прогнозируемых значений

Я хотел бы реализовать пользовательскую метрику в керасах, которая вычисляет отзыв, предполагая, что верхний k% наиболее вероятен y_pred_probsэто правда.

В numpy Я бы сделал это следующим образом. Сортировка y_preds_probs. Затем возьмите значение на kИндекс Заметка k=0.5 дал бы среднее значение.

kth_pos = int(k * len(y_pred_probs))
threshold = np.sort(y_pred_probs)[::-1][kth_pos]
y_pred = np.asarray([1 if i >= threshold else 0 for i in y_pred_probs])

Ответ от: Пользовательский порог принятия решения Keras для точности и отзыва довольно близок, но предполагает, что порог для принятия решения о том, какой y_predПредполагается, что истина уже известна. Я хотел бы объединить подходы и реализовать поиск threshold_value на основе k а также y_predв бэкэнде в Керасе, если это возможно.

def recall_at_k(y_true, y_pred):
    """Recall metric.
    Computes the recall over the whole batch using threshold_value from k-th percentile.
    """
    ###
    threshold_value = # calculate value of k-th percentile of y_pred here
    ###

    # Adaptation of the "round()" used before to get the predictions. Clipping to make sure that the predicted raw values are between 0 and 1.
    y_pred = K.cast(K.greater(K.clip(y_pred, 0, 1), threshold_value), K.floatx())
    # Compute the number of true positives. Rounding in prevention to make sure we have an integer.
    true_positives = K.round(K.sum(K.clip(y_true * y_pred, 0, 1)))
    # Compute the number of positive targets.
    possible_positives = K.sum(K.clip(y_true, 0, 1))
    recall_ratio = true_positives / (possible_positives + K.epsilon())
    return recall_ratio

1 ответ

Спасибо за цитирование моего предыдущего ответа.

В этом случае, если вы используете бэкэнд тензорного потока, я бы предложил вам использовать эту функцию тензорного потока:

tf.nn.in_top_k(
    predictions,
    targets,
    k,
    name=None
)

Он выводит тензор bools, 1, если ответ принадлежит top k, и 0, если нет.

Если вам нужна дополнительная информация, я привел ссылку на документацию tenorflow. Я надеюсь, что это помогает.:-)

Другие вопросы по тегам