Диапазон значений результата Perlin Noise

проблема

Я возился с эталонной реализацией Perlin Noise.

В коде алгоритма не указан диапазон значений, которые он будет генерировать. Из того, что я читал о Perlin Noise, результат должен быть в диапазоне [0,1]. Это не для этого алгоритма. Поэтому я поиграл, отобразил результат на графике и понял, что результат должен быть от -0,5 до 0,5.

Ну, это не так. Пока вы задаете для параметра x любое значение и оставляете y и z равными 0.

Например, если у вас есть x и y, результат будет больше, чем -0.5 и 0.5.

Вопрос

Кто-нибудь знает, как использовать этот алгоритм? В каком диапазоне находятся значения результата?

Код

Я написал пример программы на JavaFX, используя этот код Perlin Noise:

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.chart.LineChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.stage.Stage;

public class NoiseChart extends Application {

    @Override
    public void start(Stage stage) {

        // defining the axes
        final NumberAxis xAxis = new NumberAxis();
        final NumberAxis yAxis = new NumberAxis();

        // creating the chart
        final LineChart<Number, Number> lineChart = new LineChart<Number, Number>(xAxis, yAxis);
        lineChart.setCreateSymbols(false);

        // defining a series
        XYChart.Series series1 = new XYChart.Series();
        series1.setName("Perlin Noise");

        // populating the series with data from trhe perlin noise algorithm
        double tx = 0;
        double ty = 10000;

        for (int i = 0; i < 256; i++) {

            double x = ImprovedNoise.noise(tx, ty, 0);

            series1.getData().add(new XYChart.Data(tx, x));

            tx += 0.02;
            ty += 0.02;

            // output if we cross the [-0.5,0.5] range
            if( Double.compare(x, -0.5) < 0 || Double.compare( x, 0.5) > 0) {
                System.err.println( "tx=" + tx + ", ty=" + ty + ", perlin noise: " + x);
            }

        }

        // show chart
        Scene scene = new Scene(lineChart, 800, 600);
        lineChart.getData().addAll(series1);

        stage.setScene(scene);
        stage.show();
    }

    public static void main(String[] args) {
        launch(args);
    }

    // JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.
    // http://mrl.nyu.edu/~perlin/paper445.pdf
    // http://mrl.nyu.edu/~perlin/noise/

    public final static class ImprovedNoise {
    static public double noise(double x, double y, double z) {
       int X = (int)Math.floor(x) & 255,                  // FIND UNIT CUBE THAT
           Y = (int)Math.floor(y) & 255,                  // CONTAINS POINT.
           Z = (int)Math.floor(z) & 255;
       x -= Math.floor(x);                                // FIND RELATIVE X,Y,Z
       y -= Math.floor(y);                                // OF POINT IN CUBE.
       z -= Math.floor(z);
       double u = fade(x),                                // COMPUTE FADE CURVES
              v = fade(y),                                // FOR EACH OF X,Y,Z.
              w = fade(z);
       int A = p[X  ]+Y, AA = p[A]+Z, AB = p[A+1]+Z,      // HASH COORDINATES OF
           B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;      // THE 8 CUBE CORNERS,

       return lerp(w, lerp(v, lerp(u, grad(p[AA  ], x  , y  , z   ),  // AND ADD
                                      grad(p[BA  ], x-1, y  , z   )), // BLENDED
                              lerp(u, grad(p[AB  ], x  , y-1, z   ),  // RESULTS
                                      grad(p[BB  ], x-1, y-1, z   ))),// FROM  8
                      lerp(v, lerp(u, grad(p[AA+1], x  , y  , z-1 ),  // CORNERS
                                      grad(p[BA+1], x-1, y  , z-1 )), // OF CUBE
                              lerp(u, grad(p[AB+1], x  , y-1, z-1 ),
                                      grad(p[BB+1], x-1, y-1, z-1 ))));
    }
    static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
    static double lerp(double t, double a, double b) { return a + t * (b - a); }
    static double grad(int hash, double x, double y, double z) {
       int h = hash & 15;                      // CONVERT LO 4 BITS OF HASH CODE
       double u = h<8 ? x : y,                 // INTO 12 GRADIENT DIRECTIONS.
              v = h<4 ? y : h==12||h==14 ? x : z;
       return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
    }
    static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15,
    131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
    190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
    88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
    77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
    102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
    135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
    5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
    223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
    129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
    251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
    49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
    138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
    };
    static { for (int i=0; i < 256 ; i++) p[256+i] = p[i] = permutation[i]; }
    }
}

Значения, в которых превышен диапазон [-0,5,0,5]:

tx=0.5200000000000001, ty=10000.520000000011, perlin noise: -0.5000000000027285
tx=0.5400000000000001, ty=10000.540000000012, perlin noise: -0.5084454691119766
tx=0.5600000000000002, ty=10000.560000000012, perlin noise: -0.5135793753147445
tx=0.5800000000000002, ty=10000.580000000013, perlin noise: -0.515139185394058
tx=0.6000000000000002, ty=10000.600000000013, perlin noise: -0.512927358018701
tx=0.6200000000000002, ty=10000.620000000014, perlin noise: -0.5068223692749664

И график:

Или как более подходящий вариант использования изображения, в котором результат Perlin Noise сопоставляется со значениями цвета:

import javafx.application.Application;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.image.PixelWriter;
import javafx.scene.image.WritableImage;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class NoiseImage extends Application {

    DoubleProperty frequencyProperty = new SimpleDoubleProperty( 5);

    @Override
    public void start(Stage stage) {

        BorderPane root = new BorderPane();

        ImageView imageView = new ImageView(createImage());

        root.setCenter(imageView);

        HBox toolbar = new HBox();

        Label frequencyLabel = new Label( "Frequency");

        Slider frequencySlider = new Slider(0, 50, 5);
        frequencySlider.setPrefWidth(200);
        frequencySlider.setShowTickLabels(true);
        frequencySlider.setShowTickMarks(true);
        frequencySlider.valueProperty().bindBidirectional(frequencyProperty);

        frequencyProperty.addListener(new ChangeListener<Number>() {

            @Override
            public void changed(ObservableValue<? extends Number> observable, Number oldValue, Number newValue) {

                imageView.setImage(createImage());

            }

        });

        Label frequencyValueLabel = new Label( "Frequency");
        frequencyValueLabel.textProperty().bind(frequencyProperty.asString());


        toolbar.getChildren().addAll(frequencyLabel, frequencySlider, frequencyValueLabel);

        root.setTop(toolbar);

        Scene scene = new Scene(root, 800, 600);

        stage.setScene(scene);
        stage.show();
    }

    /**
     * For each pixel in the image create the perlin noise and set the gray color accordingly
     * @return
     */
    public Image createImage() {

        double noise;

        int width = 256;
        int height = 256;

        WritableImage wr = new WritableImage(width, height);
        PixelWriter pw = wr.getPixelWriter();
        for (int x = 0; x < width; x++) {
            for (int y = 0; y < height; y++) {

                double frequency = frequencyProperty.get() / (double) width;

                double tx = x * frequency; 
                double ty = y * frequency; 

                noise = ImprovedNoise.noise(tx, ty, 0);

                double gray = normalizeValue(noise, -.5, .5, 0., 1.);

                // output if we cross the [-0.5,0.5] range
                if( Double.compare(gray, 0) < 0 || Double.compare( gray, 1) > 0) {
                    System.err.println( "tx=" + x + ", ty=" + y + ", perlin noise: " + noise);
                }

                // TODO: this shouldn't be necessary
                // question: what range does the noise method return values? currently they can be larger than .5
                gray = clamp(gray, 0, 1);

                pw.setColor(x, y, Color.gray(gray));

            }
        }

        return wr;
    }

    public static double normalizeValue( double value, double min, double max, double newMin, double newMax) {

        return (value - min) * (newMax - newMin) / (max - min) + newMin;

    }

  public static double clamp( double value, double min, double max) {
    if( Double.compare(value, min) < 0)
        return min;
    if( Double.compare(value, max) > 0)
        return max;
    return value;
  }

    public static void main(String[] args) {
        launch(args);
    }

    // JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.
    // http://mrl.nyu.edu/~perlin/paper445.pdf
    // http://mrl.nyu.edu/~perlin/noise/

    public final static class ImprovedNoise {
    static public double noise(double x, double y, double z) {
       int X = (int)Math.floor(x) & 255,                  // FIND UNIT CUBE THAT
           Y = (int)Math.floor(y) & 255,                  // CONTAINS POINT.
           Z = (int)Math.floor(z) & 255;
       x -= Math.floor(x);                                // FIND RELATIVE X,Y,Z
       y -= Math.floor(y);                                // OF POINT IN CUBE.
       z -= Math.floor(z);
       double u = fade(x),                                // COMPUTE FADE CURVES
              v = fade(y),                                // FOR EACH OF X,Y,Z.
              w = fade(z);
       int A = p[X  ]+Y, AA = p[A]+Z, AB = p[A+1]+Z,      // HASH COORDINATES OF
           B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;      // THE 8 CUBE CORNERS,

       return lerp(w, lerp(v, lerp(u, grad(p[AA  ], x  , y  , z   ),  // AND ADD
                                      grad(p[BA  ], x-1, y  , z   )), // BLENDED
                              lerp(u, grad(p[AB  ], x  , y-1, z   ),  // RESULTS
                                      grad(p[BB  ], x-1, y-1, z   ))),// FROM  8
                      lerp(v, lerp(u, grad(p[AA+1], x  , y  , z-1 ),  // CORNERS
                                      grad(p[BA+1], x-1, y  , z-1 )), // OF CUBE
                              lerp(u, grad(p[AB+1], x  , y-1, z-1 ),
                                      grad(p[BB+1], x-1, y-1, z-1 ))));
    }
    static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
    static double lerp(double t, double a, double b) { return a + t * (b - a); }
    static double grad(int hash, double x, double y, double z) {
       int h = hash & 15;                      // CONVERT LO 4 BITS OF HASH CODE
       double u = h<8 ? x : y,                 // INTO 12 GRADIENT DIRECTIONS.
              v = h<4 ? y : h==12||h==14 ? x : z;
       return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
    }
    static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15,
    131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
    190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
    88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
    77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
    102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
    135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
    5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
    223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
    129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
    251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
    49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
    138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
    };
    static { for (int i=0; i < 256 ; i++) p[256+i] = p[i] = permutation[i]; }
    }
}

Значения, где [-0,5,0,5] превышены:

...
tx=250, ty=131, perlin noise: -0.5221718771387314
tx=250, ty=132, perlin noise: -0.5026623324564983
tx=251, ty=124, perlin noise: -0.5021001248099309
tx=251, ty=125, perlin noise: -0.5193524233279807
tx=251, ty=126, perlin noise: -0.5312601268638136
tx=251, ty=127, perlin noise: -0.5375809523803251
tx=251, ty=128, perlin noise: -0.5382082635276979
tx=251, ty=129, perlin noise: -0.5331735730625967
tx=251, ty=130, perlin noise: -0.5226452480286591
tx=251, ty=131, perlin noise: -0.5069234176982861
tx=252, ty=125, perlin noise: -0.509547880806866
tx=252, ty=126, perlin noise: -0.5202072536185804
...

Скриншот:

Огромное спасибо за помощь!

0 ответов

Другие вопросы по тегам