Вычислить матрицу путаницы в модели классификатора FastText

Я рассчитываю на Facebook FastText Классификатор моделирует матрицу путаницы следующим образом:

#!/usr/local/bin/python3

import argparse
import numpy as np
from sklearn.metrics import confusion_matrix


def parse_labels(path):
    with open(path, 'r') as f:
        return np.array(list(map(lambda x: int(x[9:]), f.read().split())))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Display confusion matrix.')
    parser.add_argument('test', help='Path to test labels')
    parser.add_argument('predict', help='Path to predictions')
    args = parser.parse_args()
    test_labels = parse_labels(args.test)
    pred_labels = parse_labels(args.predict)

    print(test_labels)
    print(pred_labels)

    eq = test_labels == pred_labels
    print("Accuracy: " + str(eq.sum() / len(test_labels)))
    print(confusion_matrix(test_labels, pred_labels))

Мои прогнозы и тестовый набор похожи

$ head -n10 /root/pexp 
__label__spam
__label__verified
__label__verified
__label__spam
__label__verified
__label__verified
__label__verified
__label__verified
__label__verified
__label__verified

$ head -n10 /root/dataset_test.csv 
__label__spam
__label__verified
__label__verified
__label__spam
__label__verified
__label__verified
__label__verified
__label__verified
__label__verified
__label__verified

Прогнозы модели были рассчитаны по тестовому набору следующим образом:

./fasttext predict /root/my_model.bin /root/dataset_test.csv > /root/pexp

Я тогда собираюсь вычислить FastText Матрица путаницы:

$ ./confusion.py /root/dataset_test.csv /root/pexp

но я застрял с этой ошибкой:

Traceback (most recent call last):
  File "./confusion.py", line 18, in <module>
    test_labels = parse_labels(args.test)
  File "./confusion.py", line 10, in parse_labels
    return np.array(list(map(lambda x: int(x[9:]), f.read().split())))
  File "./confusion.py", line 10, in <lambda>
    return np.array(list(map(lambda x: int(x[9:]), f.read().split())))
ValueError: invalid literal for int() with base 10: 'spam'

Я исправил скрипт, как предлагалось для обработки нечисловых меток:

def parse_labels(path):
    with open(path, 'r') as f:
        return np.array(list(map(lambda x: x[9:], f.read().split())))

Кроме того, в случае FastText возможно, что тестовый набор будет иметь нормализованные метки (без префикса __label__) в какой-то момент, чтобы преобразовать обратно в префикс, вы можете сделать так:

awk 'BEGIN{FS=OFS="\t"}{ $1 = "__label__" tolower($1) }1' /root/dataset_test.csv  > /root/dataset_test_norm.csv 

Смотрите здесь об этом.

Кроме того, входной тестовый файл должен быть вырезан из других столбцов, кроме столбца метки:

cut -f 1 -d$'\t' /root/dataset_test_norm.csv > /root/dataset_test_norm_label.csv

Итак, наконец мы получаем Матрицу путаницы:

$ ./confusion.py /root/dataset_test_norm_label.csv /root/pexp
Accuracy: 0.998852852227
[[9432    21]
 [    3 14543]]

Мое окончательное решение здесь.

[ОБНОВИТЬ]

Скрипт сейчас работает нормально. Я добавил скрипт вычисления Матрицы смешения прямо в мою реализацию FastText Node.js, FastText.js здесь

0 ответов

from sklearn.metrics import confusion_matrix

# predict the data
df["predicted"] = df["text"].apply(lambda x: model.predict(x)[0][0])

# Create the confusion matrix
confusion_matrix(df["labeled"], df["predicted"])


## OutPut:
# array([[5823,    8,  155,    1],
#        [ 199,   51,   22,    0],
#        [ 561,    2,  764,    0],
#        [  48,    0,    4,    4]], dtype=int64)
Другие вопросы по тегам