Облегченная модель Tensorflow дает неправильный вывод
Я разрабатываю модель глубокого обучения с предсказаниями регрессии. Я создал модель tflite, но ее прогнозы отличаются от исходной модели, и они полностью ошибочны. Вот мой процесс:
Я тренировал свою модель с керасом
model = Sequential()
model.add(Dense(100, input_dim=x.shape[1], activation='relu')) # Hidden 1
model.add(Dense(50, activation='relu')) # Hidden 2
model.add(Dense(1)) # Output
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(x,y,verbose=0,epochs=500)
И сохранил мою модель как файл h5
model.save("keras_model.h5")
Затем конвертировал файл h5 в формат tflile с помощью TocoConverter
converter = tf.contrib.lite.TocoConverter.from_keras_model_file("keras_model.h5")
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
Когда я тестирую оба файла с одинаковым вводом, оригинальная модель keras дает разумный вывод, но преобразованная модель дает необоснованный вывод.
# Load TFLite model and allocate tensors.
interpreter = tf.contrib.lite.Interpreter(model_path="converted_model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print(input_data)
print(output_data)
//Original model testing
from keras.models import load_model
model2 = load_model("keras_model.h5")
pred = model2.predict(x)
print(pred)
Вывод такой:
[[10. 10. 10. 10. 10. 10.]]//input_data
[[-1.4308803]]// tflite output (meaningless)
[[335.0276]] // keras file output
Почему эта проблема возникает?
1 ответ
Наконец, я нашел решение, преобразовав модель keras в замороженный граф с помощью этого фрагмента кода. Я скопировал эту папку сценариев tenorflow файла python. И скопируйте файл модели keras в ту же папку. И создайте папку с именем "Замороженный". Затем запустите эту команду
py cerasconvert.py keras_model.h5 frozen/ freeze_graph
Я преобразовал вновь созданный файл.pb в формат tflite
import tensorflow as tf
import numpy as np
graph_def_file = "frozen/frozen.pb"
input_arrays = ["dense_1_input_1"]
output_arrays = ["dense_3_1/BiasAdd"]
converter = tf.contrib.lite.TocoConverter.from_frozen_graph(
graph_def_file, input_arrays, output_arrays)
tflite_model = converter.convert()
open("frozen/converted.tflite", "wb").write(tflite_model)
Теперь моя точность предсказания модели tflite очень высока.