Получить данные из Azure HDInsight с помощью PySpark

У меня есть учетные данные и URL-адрес для доступа к базе данных Azure.

Я хочу прочитать данные, используя pyspark, но я не знаю, как это сделать.

Существует ли определенный синтаксис для подключения к базе данных Azure?

РЕДАКТИРОВАТЬ

После того, как я использовал общий код, я получил сообщение об ошибке такого типа?

Я видел, что в образце, который я имею на машине, они используют драйвер ODBC, может быть, это связано?

2018-07-14 11:22:00 WARN  SQLServerConnection:2141 - ConnectionID:1 ClientConnectionId: 7561d3ba-71ac-43b3-a35f-26ababef90cc Prelogin error: host servername.azurehdinsight.net port 443 Error reading prelogin response: An existing connection was forcibly closed by the remote host ClientConnectionId:7561d3ba-71ac-43b3-a35f-26ababef90cc

Traceback (most recent call last):
  File "C:/Users/team2/PycharmProjects/Bridgestone/spark_driver_style.py", line 46, in <module>
    .option("password", "**********")\
  File "C:\dsvm\tools\spark-2.3.0-bin-hadoop2.7\python\pyspark\sql\readwriter.py", line 172, in load
    return self._df(self._jreader.load())
  File "C:\Users\team2\PycharmProjects\Bridgestone\venv\lib\site-packages\py4j\java_gateway.py", line 1257, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "C:\dsvm\tools\spark-2.3.0-bin-hadoop2.7\python\pyspark\sql\utils.py", line 63, in deco
    return f(*a, **kw)
  File "C:\Users\team2\PycharmProjects\Bridgestone\venv\lib\site-packages\py4j\protocol.py", line 328, in get_return_value
    format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o29.load.
: com.microsoft.sqlserver.jdbc.SQLServerException: An existing connection was forcibly closed by the remote host ClientConnectionId:7561d3ba-71ac-43b3-a35f-26ababef90cc
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.terminate(SQLServerConnection.java:2400)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.terminate(SQLServerConnection.java:2384)
    at com.microsoft.sqlserver.jdbc.TDSChannel.read(IOBuffer.java:1884)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.Prelogin(SQLServerConnection.java:2137)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.connectHelper(SQLServerConnection.java:1973)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.login(SQLServerConnection.java:1628)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.connectInternal(SQLServerConnection.java:1459)
    at com.microsoft.sqlserver.jdbc.SQLServerConnection.connect(SQLServerConnection.java:773)
    at com.microsoft.sqlserver.jdbc.SQLServerDriver.connect(SQLServerDriver.java:1168)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:63)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:54)
    at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:56)
    at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation.<init>(JDBCRelation.scala:115)
    at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:52)
    at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:340)
    at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:239)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:227)
    at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:164)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at 

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:748)

1 ответ

Решение

Если вы хотите получить доступ к кластеру HDInsight из блокнота pyspark в виртуальной машине Data Science, вы можете выполнить шаги, описанные в учебном руководстве на шаге 7.

Импортируйте необходимые пакеты:

#Import required Packages
import pyodbc
import time as time
import json
import os
import urllib
import warnings
import re
import pandas as pd

Настройте соединение Hive Metastore (требуется имя пользователя и пароль из кластера):

#Create the connection to Hive using ODBC
SERVER_NAME='xxx.azurehdinsight.net'
DATABASE_NAME='default'
USERID='xxx'
PASSWORD='xxxx'
DB_DRIVER='Microsoft Hive ODBC Driver'
driver = 'DRIVER={' + DB_DRIVER + '}'
server = 'Host=' + SERVER_NAME + ';Port=443'
database = 'Schema=' + DATABASE_NAME
hiveserv = 'HiveServerType=2'
auth = 'AuthMech=6'
uid = 'UID=' + USERID
pwd = 'PWD=' + PASSWORD
CONNECTION_STRING = ';'.join([driver,server,database,hiveserv,auth,uid,pwd])
connection = pyodbc.connect(CONNECTION_STRING, autocommit=True)
cursor=connection.cursor()

Запрос данных:

queryString = """
    show tables in default;
"""
pd.read_sql(queryString,connection)
Другие вопросы по тегам