Спарк не может засолить method_descriptor

Я получаю это странное сообщение об ошибке

15/01/26 13:05:12 INFO spark.SparkContext: Created broadcast 0 from wholeTextFiles at NativeMethodAccessorImpl.java:-2
Traceback (most recent call last):
  File "/home/user/inverted-index.py", line 78, in <module>
    print sc.wholeTextFiles(data_dir).flatMap(update).top(10)#groupByKey().map(store)
  File "/home/user/spark2/python/pyspark/rdd.py", line 1045, in top
    return self.mapPartitions(topIterator).reduce(merge)
  File "/home/user/spark2/python/pyspark/rdd.py", line 715, in reduce
    vals = self.mapPartitions(func).collect()
  File "/home/user/spark2/python/pyspark/rdd.py", line 676, in collect
    bytesInJava = self._jrdd.collect().iterator()
  File "/home/user/spark2/python/pyspark/rdd.py", line 2107, in _jrdd
    pickled_command = ser.dumps(command)
  File "/home/user/spark2/python/pyspark/serializers.py", line 402, in dumps
    return cloudpickle.dumps(obj, 2)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 816, in dumps
    cp.dump(obj)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 133, in dump
    return pickle.Pickler.dump(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 224, in dump
    self.save(obj)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 562, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 254, in save_function
    self.save_function_tuple(obj, [themodule])
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 304, in save_function_tuple
    save((code, closure, base_globals))
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
    save(x)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 254, in save_function
    self.save_function_tuple(obj, [themodule])
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 304, in save_function_tuple
    save((code, closure, base_globals))
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
    save(x)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 254, in save_function
    self.save_function_tuple(obj, [themodule])
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 304, in save_function_tuple
    save((code, closure, base_globals))
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 600, in save_list
    self._batch_appends(iter(obj))
  File "/usr/lib/python2.7/pickle.py", line 636, in _batch_appends
    save(tmp[0])
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 249, in save_function
    self.save_function_tuple(obj, modList)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 309, in save_function_tuple
    save(f_globals)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 650, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 650, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 650, in save_reduce
    save(state)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 547, in save_inst
    self.save_inst_logic(obj)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 537, in save_inst_logic
    save(stuff)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 547, in save_inst
    self.save_inst_logic(obj)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 537, in save_inst_logic
    save(stuff)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 616, in save_reduce
    save(cls)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 467, in save_global
    d),obj=obj)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 631, in save_reduce
    save(args)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
    save(element)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
    pickle.Pickler.save_dict(self, obj)
  File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
    save(v)
  File "/usr/lib/python2.7/pickle.py", line 331, in save
    self.save_reduce(obj=obj, *rv)
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 616, in save_reduce
    save(cls)
  File "/usr/lib/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/home/user/spark2/python/pyspark/cloudpickle.py", line 442, in save_global
    raise pickle.PicklingError("Can't pickle builtin %s" % obj)
pickle.PicklingError: Can't pickle builtin <type 'method_descriptor'>

Моя функция обновления возвращает список кортежей типа (key, (value1, value2)) и все они являются строками, как показано ниже:

def update(doc):
    doc_id  = doc[0][path_len:-ext_len] #actual file name
    content = doc[1].lower()

    new_fi = regex.split(content)
    old_fi = fi_table.row(doc_id)

    fi_table.put(doc_id, {'cf:col': ",".join(new_fi)})

    if not old_fi:
        return [(term, ('add', doc_id)) for term in new_fi]
    else:
        new_fi = set(new_fi)
        old_fi = set(old_fi['cf:col'].split(','))
        return [(term, ('add', doc_id)) for term in new_fi - old_fi] + \
               [(term, ('del', doc_id)) for term in old_fi - new_fi]

РЕДАКТИРОВАТЬ: проблема заключается в этих 2 функции hbase, строки и пут. Когда я комментирую их оба, код работает (устанавливая old_fi как пустой словарь), но если один из них запускается, он выдает вышеуказанную ошибку. Я использую happybase для работы с hbase в python. Может кто-нибудь объяснить мне, что идет не так?

2 ответа

Решение

Spark пытается сериализовать объект подключения, чтобы его можно было использовать внутри исполнителей, что, несомненно, приведет к сбою, поскольку десериализованный объект подключения БД не может предоставить разрешение на чтение / запись другой области (или даже компьютеру). Проблема может быть воспроизведена при попытке передать объект подключения. Для этого экземпляра возникла проблема при сериализации объекта ввода / вывода.

Проблема была частично решена путем подключения к базе данных внутри функций карты. Поскольку в функции map будет слишком много соединений для каждого элемента RDD, мне пришлось переключиться на обработку разделов, чтобы уменьшить количество подключений в БД с 20 тыс. До примерно 8-64 (в зависимости от количества разделов). Разработчики Spark должны рассмотреть возможность создания функции / скрипта инициализации для исполнителей, чтобы избежать подобных тупиковых ситуаций.

Допустим, я получил эту функцию init, выполняемую каждым узлом, затем каждый узел будет подключен к базе данных (некоторый пул conn или отдельные узлы zookeeper), потому что функция init и функции map будут совместно использовать одну и ту же область, и тогда проблема ушел, поэтому вы пишете код быстрее, чем я нашел. В конце выполнения искра освободит / выгрузит эти определенные переменные, и программа завершится.

Если это действительно проблема выбора метода MethodDescriptorType, вы можете зарегистрировать способ выбора метода MethodDescriptorType следующим образом:

def _getattr(objclass, name, repr_str):
    # hack to grab the reference directly
    try:
        attr = repr_str.split("'")[3]
        return eval(attr+'.__dict__["'+name+'"]')
    except:
        attr = getattr(objclass,name)
        if name == '__dict__':
            attr = attr[name]
        return attar


def save_wrapper_descriptor(pickler, obj):
    pickler = Pickler(file, protocol)
    pickler.save_reduce(_getattr, (obj.__objclass__, obj.__name__,
                                   obj.__repr__()), obj=obj)
    return

# register the following "type" with:
#     Pickler.dispatch[MethodDescriptorType] = save_wrapper_descriptor
MethodDescriptorType = type(type.__dict__['mro'])

Затем, если вы зарегистрируете вышеуказанное в таблице отправки травления, spark использует (как показано выше, или с copy_reg), это может пройти мимо ошибки травления.

Другие вопросы по тегам