Спарк не может засолить method_descriptor
Я получаю это странное сообщение об ошибке
15/01/26 13:05:12 INFO spark.SparkContext: Created broadcast 0 from wholeTextFiles at NativeMethodAccessorImpl.java:-2
Traceback (most recent call last):
File "/home/user/inverted-index.py", line 78, in <module>
print sc.wholeTextFiles(data_dir).flatMap(update).top(10)#groupByKey().map(store)
File "/home/user/spark2/python/pyspark/rdd.py", line 1045, in top
return self.mapPartitions(topIterator).reduce(merge)
File "/home/user/spark2/python/pyspark/rdd.py", line 715, in reduce
vals = self.mapPartitions(func).collect()
File "/home/user/spark2/python/pyspark/rdd.py", line 676, in collect
bytesInJava = self._jrdd.collect().iterator()
File "/home/user/spark2/python/pyspark/rdd.py", line 2107, in _jrdd
pickled_command = ser.dumps(command)
File "/home/user/spark2/python/pyspark/serializers.py", line 402, in dumps
return cloudpickle.dumps(obj, 2)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 816, in dumps
cp.dump(obj)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 133, in dump
return pickle.Pickler.dump(self, obj)
File "/usr/lib/python2.7/pickle.py", line 224, in dump
self.save(obj)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 562, in save_tuple
save(element)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 254, in save_function
self.save_function_tuple(obj, [themodule])
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 304, in save_function_tuple
save((code, closure, base_globals))
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
save(element)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 600, in save_list
self._batch_appends(iter(obj))
File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
save(x)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 254, in save_function
self.save_function_tuple(obj, [themodule])
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 304, in save_function_tuple
save((code, closure, base_globals))
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
save(element)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 600, in save_list
self._batch_appends(iter(obj))
File "/usr/lib/python2.7/pickle.py", line 633, in _batch_appends
save(x)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 254, in save_function
self.save_function_tuple(obj, [themodule])
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 304, in save_function_tuple
save((code, closure, base_globals))
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
save(element)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 600, in save_list
self._batch_appends(iter(obj))
File "/usr/lib/python2.7/pickle.py", line 636, in _batch_appends
save(tmp[0])
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 249, in save_function
self.save_function_tuple(obj, modList)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 309, in save_function_tuple
save(f_globals)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 331, in save
self.save_reduce(obj=obj, *rv)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 650, in save_reduce
save(state)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 331, in save
self.save_reduce(obj=obj, *rv)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 650, in save_reduce
save(state)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 331, in save
self.save_reduce(obj=obj, *rv)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 650, in save_reduce
save(state)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 547, in save_inst
self.save_inst_logic(obj)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 537, in save_inst_logic
save(stuff)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 547, in save_inst
self.save_inst_logic(obj)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 537, in save_inst_logic
save(stuff)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 331, in save
self.save_reduce(obj=obj, *rv)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 616, in save_reduce
save(cls)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 467, in save_global
d),obj=obj)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 631, in save_reduce
save(args)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/usr/lib/python2.7/pickle.py", line 548, in save_tuple
save(element)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 174, in save_dict
pickle.Pickler.save_dict(self, obj)
File "/usr/lib/python2.7/pickle.py", line 649, in save_dict
self._batch_setitems(obj.iteritems())
File "/usr/lib/python2.7/pickle.py", line 681, in _batch_setitems
save(v)
File "/usr/lib/python2.7/pickle.py", line 331, in save
self.save_reduce(obj=obj, *rv)
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 616, in save_reduce
save(cls)
File "/usr/lib/python2.7/pickle.py", line 286, in save
f(self, obj) # Call unbound method with explicit self
File "/home/user/spark2/python/pyspark/cloudpickle.py", line 442, in save_global
raise pickle.PicklingError("Can't pickle builtin %s" % obj)
pickle.PicklingError: Can't pickle builtin <type 'method_descriptor'>
Моя функция обновления возвращает список кортежей типа (key, (value1, value2))
и все они являются строками, как показано ниже:
def update(doc):
doc_id = doc[0][path_len:-ext_len] #actual file name
content = doc[1].lower()
new_fi = regex.split(content)
old_fi = fi_table.row(doc_id)
fi_table.put(doc_id, {'cf:col': ",".join(new_fi)})
if not old_fi:
return [(term, ('add', doc_id)) for term in new_fi]
else:
new_fi = set(new_fi)
old_fi = set(old_fi['cf:col'].split(','))
return [(term, ('add', doc_id)) for term in new_fi - old_fi] + \
[(term, ('del', doc_id)) for term in old_fi - new_fi]
РЕДАКТИРОВАТЬ: проблема заключается в этих 2 функции hbase, строки и пут. Когда я комментирую их оба, код работает (устанавливая old_fi как пустой словарь), но если один из них запускается, он выдает вышеуказанную ошибку. Я использую happybase для работы с hbase в python. Может кто-нибудь объяснить мне, что идет не так?
2 ответа
Spark пытается сериализовать объект подключения, чтобы его можно было использовать внутри исполнителей, что, несомненно, приведет к сбою, поскольку десериализованный объект подключения БД не может предоставить разрешение на чтение / запись другой области (или даже компьютеру). Проблема может быть воспроизведена при попытке передать объект подключения. Для этого экземпляра возникла проблема при сериализации объекта ввода / вывода.
Проблема была частично решена путем подключения к базе данных внутри функций карты. Поскольку в функции map будет слишком много соединений для каждого элемента RDD, мне пришлось переключиться на обработку разделов, чтобы уменьшить количество подключений в БД с 20 тыс. До примерно 8-64 (в зависимости от количества разделов). Разработчики Spark должны рассмотреть возможность создания функции / скрипта инициализации для исполнителей, чтобы избежать подобных тупиковых ситуаций.
Допустим, я получил эту функцию init, выполняемую каждым узлом, затем каждый узел будет подключен к базе данных (некоторый пул conn или отдельные узлы zookeeper), потому что функция init и функции map будут совместно использовать одну и ту же область, и тогда проблема ушел, поэтому вы пишете код быстрее, чем я нашел. В конце выполнения искра освободит / выгрузит эти определенные переменные, и программа завершится.
Если это действительно проблема выбора метода MethodDescriptorType, вы можете зарегистрировать способ выбора метода MethodDescriptorType следующим образом:
def _getattr(objclass, name, repr_str):
# hack to grab the reference directly
try:
attr = repr_str.split("'")[3]
return eval(attr+'.__dict__["'+name+'"]')
except:
attr = getattr(objclass,name)
if name == '__dict__':
attr = attr[name]
return attar
def save_wrapper_descriptor(pickler, obj):
pickler = Pickler(file, protocol)
pickler.save_reduce(_getattr, (obj.__objclass__, obj.__name__,
obj.__repr__()), obj=obj)
return
# register the following "type" with:
# Pickler.dispatch[MethodDescriptorType] = save_wrapper_descriptor
MethodDescriptorType = type(type.__dict__['mro'])
Затем, если вы зарегистрируете вышеуказанное в таблице отправки травления, spark
использует (как показано выше, или с copy_reg
), это может пройти мимо ошибки травления.