Как мне оптимизировать книгу предельных заказов на Haskell (с кодом, отчетами, графиками)?
Я написал версию книги предельных заказов на Haskell, ссылаясь на эту версию, написанную на C:
https://github.com/jordanbaucke/Limit-Order-Book/blob/master/Others/C%2B%2B/engine.c
Книга лимитных ордеров - это механизм, который многие фондовые и валютные биржи используют для расчета сделок с валютой и акциями.
Эта версия haskell (исходный код находится ниже) отправляет 2000 произвольных предельных заказов в книгу заказов и вычисляет среднюю цену исполнения.
main = do
orders <- randomOrders
let (orderBook, events) = foldr (\order (book, ev) -> let (b, e) = processOrder order book in (b, ev++e)) (empty, [])
(take 2000 orders)
let (total, count) = ((fromIntegral $ sum $ map executePrice events), fromIntegral $ length events)
print $ "Average execution price: " ++ show (total / count) ++ ", " ++ (show count) ++ " executions"
Я скомпилировал его с -O2, и запуск программы без профилирования занимает почти 10 секунд.
time ./main
"Average execution price: 15137.667036215817, 2706.0 executions"
./main 9.90s user 0.09s system 89% cpu 11.205 total
Я попытался настроить программу для обработки 10000 заказов, что заняло 160 секунд.
time ./main
"Average execution price: 15047.099824996354, 13714.0 executions"
./main 161.99s user 2.08s system 57% cpu 4:44.16 total
Что я могу сделать, чтобы сделать это значительно быстрее, не жертвуя функциональностью? Как вы думаете, возможно ли довести его до 10000 заказов в секунду?
Вот графики использования памяти (с 2000 порядками), сгенерированные с помощью +RTS hc/hd/hy и hp2ps:
Вот исходный код:
import Data.Array
import Data.List
import Data.Word
import Data.Maybe
import Data.Tuple
import Debug.Trace
import System.Random
import Control.Monad (replicateM)
-- Price is measured in smallest divisible unit of currency.
type Price = Word64
maximumPrice = 30000
type Quantity = Word64
type Trader a = a
type Entry a = (Quantity, Trader a)
type PricePoint a = [Entry a]
data OrderBook a = OrderBook {
pricePoints :: Array Price (PricePoint a),
minAsk :: Price,
maxBid :: Price
} deriving (Show)
data Side = Buy | Sell deriving (Eq, Show, Read, Enum, Bounded)
instance Random Side where
randomR (a, b) g =
case randomR (fromEnum a, fromEnum b) g of
(x, g') -> (toEnum x, g')
random g = randomR (minBound, maxBound) g
data Order a = Order {
side :: Side,
price :: Price,
size :: Quantity,
trader :: Trader a
} deriving (Show)
data Event a =
Execution {
buyer :: Trader a,
seller :: Trader a,
executePrice :: Price,
executeQuantity :: Quantity
} deriving (Show)
empty :: OrderBook a
empty = OrderBook {
pricePoints = array (1, maximumPrice) [(i, []) | i <- [1..maximumPrice]],
minAsk = maximumPrice,
maxBid = 0
}
insertOrder :: Order a -> OrderBook a -> OrderBook a
insertOrder (Order side price size t) (OrderBook pricePoints minAsk maxBid) =
OrderBook {
pricePoints = pricePoints // [(price, (pricePoints!price) ++ [(size, t)])],
maxBid = if side == Buy && maxBid < price then price else maxBid,
minAsk = if side == Sell && minAsk > price then price else minAsk
}
processOrder :: Order a -> OrderBook a -> (OrderBook a, [Event a])
processOrder order orderBook
| size /= 0 && price `comp` current =
let (_order, _ob, _events) = executeForPrice order{price=current} _orderBook
in (\(a,b) c -> (a,c++b)) (processOrder _order{price=price} _ob) _events
| otherwise = (insertOrder order orderBook, [])
where
Order side price size _ = order
(current, comp, _orderBook)
| side == Buy = (minAsk orderBook, (>=), orderBook{minAsk=current+1})
| side == Sell = (maxBid orderBook, (<=), orderBook{maxBid=current-1})
executeForPrice :: Order a -> OrderBook a -> (Order a, OrderBook a, [Event a])
executeForPrice order orderBook
| null pricePoint = (order, orderBook, [])
| entrySize < size = (\(a, b, c) d -> (a, b, d:c))
(executeForPrice order{size=size-entrySize} (set rest)) (execute entrySize)
| otherwise =
let entries
| entrySize > size = (entrySize-size, entryTrader):rest
| otherwise = rest
in (order{size=0}, set entries, [execute size])
where
pricePoint = (pricePoints orderBook)!price
(entrySize, entryTrader):rest = pricePoint
Order side price size trader = order
set = \p -> orderBook{pricePoints=(pricePoints orderBook)//[(price, p)]}
(buyer, seller) = (if side == Buy then id else swap) (trader, entryTrader)
execute = Execution buyer seller price
randomTraders :: IO [Int]
randomTraders = do
g <- newStdGen
return (randomRs (1, 3) g)
randomPrices :: IO [Word64]
randomPrices = do
g <- newStdGen
return (map fromIntegral $ randomRs (1 :: Int, fromIntegral maximumPrice) g)
randomSizes :: IO [Word64]
randomSizes = do
g <- newStdGen
return (map fromIntegral $ randomRs (1 :: Int, 10) g)
randomSides :: IO [Side]
randomSides = do
g <- newStdGen
return (randomRs (Buy, Sell) g)
randomOrders = do
sides <- randomSides
prices <- randomPrices
sizes <- randomSizes
traders <- randomTraders
let zipped = zip4 sides prices sizes traders
let orders = map (\(side, price, size, trader) -> Order side price size trader) zipped
return orders
main = do
orders <- randomOrders
let (orderBook, events) = foldr (\order (book, ev) -> let (b, e) = processOrder order book in (b, ev++e)) (empty, [])
(take 2000 orders)
let (total, count) = ((fromIntegral $ sum $ map executePrice events), fromIntegral $ length events)
print $ "Average execution price: " ++ show (total / count) ++ ", " ++ (show count) ++ " executions"
Вот отчеты профилирования:
ghc -rtsopts --make -O2 OrderBook.hs -o main -prof -auto-all -caf-all -fforce-recomp
time ./main +RTS -sstderr +RTS -hd -p -K100M && hp2ps -e8in -c main.hp
./main +RTS -sstderr -hd -p -K100M
"Average execution price: 15110.97202536367, 2681.0 executions"
3,184,295,808 bytes allocated in the heap
338,666,300 bytes copied during GC
5,017,560 bytes maximum residency (149 sample(s))
196,620 bytes maximum slop
14 MB total memory in use (2 MB lost due to fragmentation)
Generation 0: 4876 collections, 0 parallel, 1.98s, 2.01s elapsed
Generation 1: 149 collections, 0 parallel, 1.02s, 1.07s elapsed
INIT time 0.00s ( 0.00s elapsed)
MUT time 5.16s ( 5.24s elapsed)
GC time 3.00s ( 3.08s elapsed)
RP time 0.00s ( 0.00s elapsed)
PROF time 0.01s ( 0.01s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 8.17s ( 8.33s elapsed)
%GC time 36.7% (36.9% elapsed)
Alloc rate 617,232,166 bytes per MUT second
Productivity 63.1% of total user, 61.9% of total elapsed
./main +RTS -sstderr +RTS -hd -p -K100M 8.17s user 0.06s system 98% cpu 8.349 total
cat main.prof
Sun Feb 9 12:03 2014 Time and Allocation Profiling Report (Final)
main +RTS -sstderr -hd -p -K100M -RTS
total time = 0.64 secs (32 ticks @ 20 ms)
total alloc = 1,655,532,980 bytes (excludes profiling overheads)
COST CENTRE MODULE %time %alloc
processOrder Main 46.9 81.2
insertOrder Main 21.9 0.0
executeForPrice Main 18.8 9.7
randomPrices Main 9.4 0.1
main Main 3.1 4.5
minAsk Main 0.0 2.1
maxBid Main 0.0 2.0
individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 1 0 0.0 0.0 100.0 100.0
main Main 392 3 3.1 4.5 100.0 99.8
executePrice Main 417 2681 0.0 0.0 0.0 0.0
processOrder Main 398 5695463 46.9 81.2 87.5 95.0
executeForPrice Main 412 5695252 18.8 9.7 18.8 9.7
pricePoints Main 413 5695252 0.0 0.0 0.0 0.0
insertOrder Main 406 1999 21.9 0.0 21.9 0.0
minAsk Main 405 0 0.0 2.1 0.0 2.1
maxBid Main 400 0 0.0 2.0 0.0 2.0
randomOrders Main 393 1 0.0 0.0 9.4 0.2
randomTraders Main 397 1 0.0 0.0 0.0 0.0
randomSizes Main 396 2 0.0 0.1 0.0 0.1
randomPrices Main 395 2 9.4 0.1 9.4 0.1
randomSides Main 394 1 0.0 0.1 0.0 0.1
CAF:main14 Main 383 1 0.0 0.0 0.0 0.0
randomPrices Main 401 0 0.0 0.0 0.0 0.0
CAF:lvl42_r2wH Main 382 1 0.0 0.0 0.0 0.0
main Main 418 0 0.0 0.0 0.0 0.0
CAF:empty_rqz Main 381 1 0.0 0.0 0.0 0.0
empty Main 403 1 0.0 0.0 0.0 0.0
CAF:lvl40_r2wB Main 380 1 0.0 0.0 0.0 0.0
empty Main 407 0 0.0 0.0 0.0 0.0
CAF:lvl39_r2wz Main 379 1 0.0 0.0 0.0 0.1
empty Main 409 0 0.0 0.1 0.0 0.1
CAF:lvl38_r2wv Main 378 1 0.0 0.0 0.0 0.1
empty Main 410 0 0.0 0.1 0.0 0.1
CAF:maximumPrice Main 377 1 0.0 0.0 0.0 0.0
maximumPrice Main 402 1 0.0 0.0 0.0 0.0
CAF:lvl14_r2vF Main 350 1 0.0 0.0 0.0 0.0
executeForPrice Main 414 0 0.0 0.0 0.0 0.0
CAF:lvl12_r2vB Main 349 1 0.0 0.0 0.0 0.0
processOrder Main 415 0 0.0 0.0 0.0 0.0
CAF:lvl10_r2vx Main 348 1 0.0 0.0 0.0 0.0
processOrder Main 416 0 0.0 0.0 0.0 0.0
CAF:lvl8_r2vt Main 347 1 0.0 0.0 0.0 0.0
processOrder Main 399 0 0.0 0.0 0.0 0.0
CAF:lvl6_r2vp Main 346 1 0.0 0.0 0.0 0.0
empty Main 408 0 0.0 0.0 0.0 0.0
CAF:lvl4_r2vl Main 345 1 0.0 0.0 0.0 0.0
empty Main 411 0 0.0 0.0 0.0 0.0
CAF:lvl2_r2vh Main 344 1 0.0 0.0 0.0 0.0
empty Main 404 0 0.0 0.0 0.0 0.0
CAF GHC.Float 319 8 0.0 0.0 0.0 0.0
CAF GHC.Int 304 2 0.0 0.0 0.0 0.0
CAF GHC.IO.Handle.FD 278 2 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 239 2 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 232 1 0.0 0.0 0.0 0.0
CAF System.Random 222 1 0.0 0.0 0.0 0.0
CAF Data.Fixed 217 3 0.0 0.0 0.0 0.0
CAF Data.Time.Clock.POSIX 214 2 0.0 0.0 0.0 0.0
Я новичок в Хаскеле. Как мне интерпретировать эти отчеты, что они означают и что я могу сделать, чтобы сделать мой код быстрее?
1 ответ
Из сделанного вами профилирования мы можем отметить две вещи. Кажется, в памяти много массивов, а также достаточное количество кортежей или, вернее, функций проекции кортежей. Так что это, кажется, хорошие цели для оптимизации.
Сначала я попытался заменить массивы на Data.Map
и для меня это сократило время выполнения в два раза. Это намного большая победа, чем вы сообщили в одном из комментариев к вашему вопросу. Вы не сказали точно, как вы использовали карты, но одну вещь я сделал, чтобы убедиться, что исходная карта пуста, то есть я не инициализировал ее множеством пустых ценовых точек. Чтобы это работало, я использовал findWithDefault
в Data.Map
и пусть он возвращает пустой список всякий раз, когда ключ не был доступен. Если вы этого не сделали, то это может быть причиной того, что я получил намного лучшее ускорение, чем вы.
Я продолжил исследовать функции выбора кортежа. Один из распространенных приемов при написании высокопроизводительного Haskell - убедиться, что все правильно распаковано. Возвращение кортежей из функций может быть дорогостоящим, и вы делаете это для двух наиболее часто вызываемых функций, executePrice
а также processOrder
, Перед тем как переписать код, я посмотрел на промежуточный код GHC, чтобы узнать, удалось ли GHC самостоятельно распаковать кортежи. См. Этот пост для получения информации о том, как посмотреть промежуточное представление GHC: чтение GHC Core. Нужно искать, имеет ли функция возвращаемый тип (OrderBook a, [Event a])
или же (# OrderBook a, [Event a] #)
, Последнее хорошо, первое плохо.
Я обнаружил, что GHC не удалось распаковать кортежи, и поэтому я начал с распаковки возвращаемого типа processOrder
рукой. Для этого мне пришлось заменить foldr
в main
со специализированным циклом, так как foldr
не может иметь дело с распакованными кортежами. Это дало скромный выигрыш. Затем я попытался распаковать executeForPrice
но это привело к следующей ошибке: https://ghc.haskell.org/trac/ghc/ticket/8762. Возможно, есть способ избежать этой ошибки, но я не стал ее преследовать.
Еще одно небольшое улучшение: распаковать все поля, которые вы можете в типах OrderBook
а также Order
, Это дало мне небольшой выигрыш.
Надеюсь, это поможет. Удачи в оптимизации ваших программ на Haskell.