Зашифровать и расшифровать строку в C#?
Как я могу зашифровать и расшифровать строку в C#?
25 ответов
РЕДАКТИРОВАТЬ 2013- октябрь: хотя я и отредактировал этот ответ для устранения недостатков, см . Ответ jbtule для более надежного и обоснованного решения.
/questions/10441364/zashifrovat-i-rasshifrovat-stroku-v-c/10441378#10441378
Оригинальный ответ:
Вот рабочий пример, полученный из документации "RijndaelManaged Class" и MCTS Training Kit.
РЕДАКТИРОВАТЬ 2012-Апрель: Этот ответ был отредактирован, чтобы предвосхитить IV в соответствии с предложением jbtule и как показано здесь:
http://msdn.microsoft.com/en-us/library/system.security.cryptography.aesmanaged%28v=vs.95%29.aspx
Удачи!
public class Crypto
{
//While an app specific salt is not the best practice for
//password based encryption, it's probably safe enough as long as
//it is truly uncommon. Also too much work to alter this answer otherwise.
private static byte[] _salt = __To_Do__("Add a app specific salt here");
/// <summary>
/// Encrypt the given string using AES. The string can be decrypted using
/// DecryptStringAES(). The sharedSecret parameters must match.
/// </summary>
/// <param name="plainText">The text to encrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for encryption.</param>
public static string EncryptStringAES(string plainText, string sharedSecret)
{
if (string.IsNullOrEmpty(plainText))
throw new ArgumentNullException("plainText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
string outStr = null; // Encrypted string to return
RijndaelManaged aesAlg = null; // RijndaelManaged object used to encrypt the data.
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create a RijndaelManaged object
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Create a decryptor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
// prepend the IV
msEncrypt.Write(BitConverter.GetBytes(aesAlg.IV.Length), 0, sizeof(int));
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
}
outStr = Convert.ToBase64String(msEncrypt.ToArray());
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
// Return the encrypted bytes from the memory stream.
return outStr;
}
/// <summary>
/// Decrypt the given string. Assumes the string was encrypted using
/// EncryptStringAES(), using an identical sharedSecret.
/// </summary>
/// <param name="cipherText">The text to decrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for decryption.</param>
public static string DecryptStringAES(string cipherText, string sharedSecret)
{
if (string.IsNullOrEmpty(cipherText))
throw new ArgumentNullException("cipherText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
// Declare the RijndaelManaged object
// used to decrypt the data.
RijndaelManaged aesAlg = null;
// Declare the string used to hold
// the decrypted text.
string plaintext = null;
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create the streams used for decryption.
byte[] bytes = Convert.FromBase64String(cipherText);
using (MemoryStream msDecrypt = new MemoryStream(bytes))
{
// Create a RijndaelManaged object
// with the specified key and IV.
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Get the initialization vector from the encrypted stream
aesAlg.IV = ReadByteArray(msDecrypt);
// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
return plaintext;
}
private static byte[] ReadByteArray(Stream s)
{
byte[] rawLength = new byte[sizeof(int)];
if (s.Read(rawLength, 0, rawLength.Length) != rawLength.Length)
{
throw new SystemException("Stream did not contain properly formatted byte array");
}
byte[] buffer = new byte[BitConverter.ToInt32(rawLength, 0)];
if (s.Read(buffer, 0, buffer.Length) != buffer.Length)
{
throw new SystemException("Did not read byte array properly");
}
return buffer;
}
}
Современные примеры симметричного аутентифицированного шифрования строки.
Общая лучшая практика для симметричного шифрования - использовать Аутентифицированное шифрование с ассоциированными данными (AEAD), однако это не является частью стандартных криптографических библиотек.net. Таким образом, в первом примере используется AES256, а затем HMAC256, двухэтапное шифрование, а затем MAC, для которого требуется больше служебных данных и больше ключей.
Во втором примере используется более простая практика AES256- GCM с использованием Bouncy Castle с открытым исходным кодом (через nuget).
Оба примера имеют основную функцию, которая принимает строку секретного сообщения, ключ (и) и необязательную несекретную полезную нагрузку, а также возвращаемую и аутентифицированную зашифрованную строку, необязательно дополненную несекретными данными. В идеале вы должны использовать их с 256-битным ключом (ами), сгенерированными случайным образом. NewKey()
,
Оба примера также имеют вспомогательные методы, которые используют строковый пароль для генерации ключей. Эти вспомогательные методы предоставлены для удобства сопоставления с другими примерами, однако они гораздо менее безопасны, поскольку надежность пароля будет намного слабее, чем у ключа 256 бит.
Обновление: Добавлено byte[]
перегрузки, и только Gist имеет полное форматирование с отступом в 4 пробела и api docs из-за пределов ответов Stackru.
Встроенное шифрование.NET (AES) -Then-MAC (HMAC) [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace Encryption
{
public static class AESThenHMAC
{
private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();
//Preconfigured Encryption Parameters
public static readonly int BlockBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 64;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.GetBytes(key);
return key;
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize + HMac-Tag(32)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[] authKey,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
/// using Keys derived from a Password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">password</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
/// using keys derived from a password (PBKDF2).
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey, byte[] nonSecretPayload = null)
{
//User Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "authKey");
if (secretMessage == null || secretMessage.Length < 1)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//non-secret payload optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
byte[] cipherText;
byte[] iv;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Use random IV
aes.GenerateIV();
iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
using (var cipherStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cryptoStream))
{
//Encrypt Data
binaryWriter.Write(secretMessage);
}
cipherText = cipherStream.ToArray();
}
}
//Assemble encrypted message and add authentication
using (var hmac = new HMACSHA256(authKey))
using (var encryptedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(encryptedStream))
{
//Prepend non-secret payload if any
binaryWriter.Write(nonSecretPayload);
//Prepend IV
binaryWriter.Write(iv);
//Write Ciphertext
binaryWriter.Write(cipherText);
binaryWriter.Flush();
//Authenticate all data
var tag = hmac.ComputeHash(encryptedStream.ToArray());
//Postpend tag
binaryWriter.Write(tag);
}
return encryptedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[] authKey, int nonSecretPayloadLength = 0)
{
//Basic Usage Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize), "authKey");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var hmac = new HMACSHA256(authKey))
{
var sentTag = new byte[hmac.HashSize / 8];
//Calculate Tag
var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length - sentTag.Length);
var ivLength = (BlockBitSize / 8);
//if message length is to small just return null
if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
return null;
//Grab Sent Tag
Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0, sentTag.Length);
//Compare Tag with constant time comparison
var compare = 0;
for (var i = 0; i < sentTag.Length; i++)
compare |= sentTag[i] ^ calcTag[i];
//if message doesn't authenticate return null
if (compare != 0)
return null;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Grab IV from message
var iv = new byte[ivLength];
Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);
using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
using (var plainTextStream = new MemoryStream())
{
using (var decrypterStream = new CryptoStream(plainTextStream, decrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(decrypterStream))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
encryptedMessage,
nonSecretPayloadLength + iv.Length,
encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
);
}
//Return Plain Text
return plainTextStream.ToArray();
}
}
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length ==0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
int payloadIndex = nonSecretPayload.Length;
byte[] cryptKey;
byte[] authKey;
//Use Random Salt to prevent pre-generated weak password attacks.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
cryptKey = generator.GetBytes(KeyBitSize / 8);
//Create Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
payloadIndex += salt.Length;
}
//Deriving separate key, might be less efficient than using HKDF,
//but now compatible with RNEncryptor which had a very similar wireformat and requires less code than HKDF.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
authKey = generator.GetBytes(KeyBitSize / 8);
//Create Rest of Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
}
return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cryptSalt = new byte[SaltBitSize / 8];
var authSalt = new byte[SaltBitSize / 8];
//Grab Salt from Non-Secret Payload
Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0, authSalt.Length);
byte[] cryptKey;
byte[] authKey;
//Generate crypt key
using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
{
cryptKey = generator.GetBytes(KeyBitSize / 8);
}
//Generate auth key
using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
{
authKey = generator.GetBytes(KeyBitSize / 8);
}
return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length + authSalt.Length + nonSecretPayloadLength);
}
}
}
Надувной замок AES-GCM [Гист]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{
public static class AESGCM
{
private static readonly SecureRandom Random = new SecureRandom();
//Preconfigured Encryption Parameters
public static readonly int NonceBitSize = 128;
public static readonly int MacBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 128;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random new key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.NextBytes(key);
return key;
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayload">Optional non-secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message + HMac-Tag(16)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayloadLength">Length of the optional non-secret payload.</param>
/// <returns>Decrypted Message</returns>
public static string SimpleDecrypt(string encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
if (string.IsNullOrEmpty(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
/// using key derived from a password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
/// using a key derived from a password (PBKDF2)
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//Non-secret Payload Optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
//Using random nonce large enough not to repeat
var nonce = new byte[NonceBitSize / 8];
Random.NextBytes(nonce, 0, nonce.Length);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(true, parameters);
//Generate Cipher Text With Auth Tag
var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
cipher.DoFinal(cipherText, len);
//Assemble Message
using (var combinedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(combinedStream))
{
//Prepend Authenticated Payload
binaryWriter.Write(nonSecretPayload);
//Prepend Nonce
binaryWriter.Write(nonce);
//Write Cipher Text
binaryWriter.Write(cipherText);
}
return combinedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var cipherStream = new MemoryStream(encryptedMessage))
using (var cipherReader = new BinaryReader(cipherStream))
{
//Grab Payload
var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);
//Grab Nonce
var nonce = cipherReader.ReadBytes(NonceBitSize / 8);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(false, parameters);
//Decrypt Cipher Text
var cipherText = cipherReader.ReadBytes(encryptedMessage.Length - nonSecretPayloadLength - nonce.Length);
var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];
try
{
var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
cipher.DoFinal(plainText, len);
}
catch (InvalidCipherTextException)
{
//Return null if it doesn't authenticate
return null;
}
return plainText;
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Use Random Salt to minimize pre-generated weak password attacks.
var salt = new byte[SaltBitSize / 8];
Random.NextBytes(salt);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
//Create Full Non Secret Payload
var payload = new byte[salt.Length + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);
return SimpleEncrypt(secretMessage, key.GetKey(), payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Grab Salt from Payload
var salt = new byte[SaltBitSize / 8];
Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length + nonSecretPayloadLength);
}
}
}
Вот пример использования RSA.
Важное замечание: Существует ограничение на размер данных, которые вы можете зашифровать с помощью шифрования RSA, KeySize - MinimumPadding
, например, 256 байтов (при условии 2048-битного ключа) - 42 байта (минимальное заполнение OEAP) = 214 байтов (максимальный размер открытого текста)
Замените your_rsa_key на ваш ключ RSA.
var provider = new System.Security.Cryptography.RSACryptoServiceProvider();
provider.ImportParameters(your_rsa_key);
var encryptedBytes = provider.Encrypt(
System.Text.Encoding.UTF8.GetBytes("Hello World!"), true);
string decryptedTest = System.Text.Encoding.UTF8.GetString(
provider.Decrypt(encryptedBytes, true));
Для получения дополнительной информации посетите MSDN - RSACryptoServiceProvider
Если вы используете ASP.Net, теперь вы можете использовать встроенную функциональность в.Net 4.0 и более поздних версиях.
System.Web.Security.MachineKey
.Net 4.5 имеет MachineKey.Protect()
а также MachineKey.Unprotect()
,
.Net 4.0 имеет MachineKey.Encode()
а также MachineKey.Decode()
, Вы должны просто установить MachineKeyProtection на "Все".
За пределами ASP.Net этот класс генерирует новый ключ при каждом перезапуске приложения, поэтому не работает. При быстром взгляде на ILSpy мне кажется, что он генерирует свои собственные значения по умолчанию, если отсутствуют соответствующие app.settings. Таким образом, вы можете установить его вне ASP.Net.
Мне не удалось найти не -ASP.Net-эквивалент за пределами пространства имен System.Web.
BouncyCastle - это отличная библиотека Crypto для.NET, она доступна в виде пакета Nuget для установки в ваши проекты. Мне это нравится намного больше, чем то, что в настоящее время доступно в библиотеке System.Security.Cryptography. Он дает вам гораздо больше возможностей с точки зрения доступных алгоритмов и предоставляет больше режимов для этих алгоритмов.
Это пример реализации TwoFish, которая была написана Брюсом Шнайером (героем для всех нас, параноиков). Это симметричный алгоритм, такой как Rijndael (он же AES). Он был одним из трех финалистов стандарта AES и связался с другим известным алгоритмом, написанным Брюсом Шнайером, который называется BlowFish.
Первое, что нужно сделать в bouncycastle, - это создать класс шифрования, это облегчит реализацию других блочных шифров в библиотеке. Следующий класс шифра принимает общий аргумент T, где T реализует IBlockCipher и имеет конструктор по умолчанию.
ОБНОВЛЕНИЕ: В связи с популярным спросом, я решил реализовать генерацию случайного IV, а также включить HMAC в этот класс. Хотя с точки зрения стиля это идет вразрез с принципом единоличной ответственности SOLID, из-за характера того, что этот класс я обновил. Этот класс теперь будет принимать два общих параметра, один для шифра и один для дайджеста. Он автоматически генерирует IV с использованием RNGCryptoServiceProvider, чтобы обеспечить хорошую энтропию ГСЧ, и позволяет вам использовать любой алгоритм дайджеста, который вы хотите от BouncyCastle, для генерации MAC.
using System;
using System.Security.Cryptography;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Macs;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Paddings;
using Org.BouncyCastle.Crypto.Parameters;
public sealed class Encryptor<TBlockCipher, TDigest>
where TBlockCipher : IBlockCipher, new()
where TDigest : IDigest, new()
{
private Encoding encoding;
private IBlockCipher blockCipher;
private BufferedBlockCipher cipher;
private HMac mac;
private byte[] key;
public Encryptor(Encoding encoding, byte[] key, byte[] macKey)
{
this.encoding = encoding;
this.key = key;
this.Init(key, macKey, new Pkcs7Padding());
}
public Encryptor(Encoding encoding, byte[] key, byte[] macKey, IBlockCipherPadding padding)
{
this.encoding = encoding;
this.key = key;
this.Init(key, macKey, padding);
}
private void Init(byte[] key, byte[] macKey, IBlockCipherPadding padding)
{
this.blockCipher = new CbcBlockCipher(new TBlockCipher());
this.cipher = new PaddedBufferedBlockCipher(this.blockCipher, padding);
this.mac = new HMac(new TDigest());
this.mac.Init(new KeyParameter(macKey));
}
public string Encrypt(string plain)
{
return Convert.ToBase64String(EncryptBytes(plain));
}
public byte[] EncryptBytes(string plain)
{
byte[] input = this.encoding.GetBytes(plain);
var iv = this.GenerateIV();
var cipher = this.BouncyCastleCrypto(true, input, new ParametersWithIV(new KeyParameter(key), iv));
byte[] message = CombineArrays(iv, cipher);
this.mac.Reset();
this.mac.BlockUpdate(message, 0, message.Length);
byte[] digest = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
this.mac.DoFinal(digest, 0);
var result = CombineArrays(digest, message);
return result;
}
public byte[] DecryptBytes(byte[] bytes)
{
// split the digest into component parts
var digest = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
var message = new byte[bytes.Length - digest.Length];
var iv = new byte[this.blockCipher.GetBlockSize()];
var cipher = new byte[message.Length - iv.Length];
Buffer.BlockCopy(bytes, 0, digest, 0, digest.Length);
Buffer.BlockCopy(bytes, digest.Length, message, 0, message.Length);
if (!IsValidHMac(digest, message))
{
throw new CryptoException();
}
Buffer.BlockCopy(message, 0, iv, 0, iv.Length);
Buffer.BlockCopy(message, iv.Length, cipher, 0, cipher.Length);
byte[] result = this.BouncyCastleCrypto(false, cipher, new ParametersWithIV(new KeyParameter(key), iv));
return result;
}
public string Decrypt(byte[] bytes)
{
return this.encoding.GetString(DecryptBytes(bytes));
}
public string Decrypt(string cipher)
{
return this.Decrypt(Convert.FromBase64String(cipher));
}
private bool IsValidHMac(byte[] digest, byte[] message)
{
this.mac.Reset();
this.mac.BlockUpdate(message, 0, message.Length);
byte[] computed = new byte[this.mac.GetUnderlyingDigest().GetDigestSize()];
this.mac.DoFinal(computed, 0);
return AreEqual(digest,computed);
}
private static bool AreEqual(byte [] digest, byte[] computed)
{
if(digest.Length != computed.Length)
{
return false;
}
int result = 0;
for (int i = 0; i < digest.Length; i++)
{
// compute equality of all bytes before returning.
// helps prevent timing attacks:
// https://codahale.com/a-lesson-in-timing-attacks/
result |= digest[i] ^ computed[i];
}
return result == 0;
}
private byte[] BouncyCastleCrypto(bool forEncrypt, byte[] input, ICipherParameters parameters)
{
try
{
cipher.Init(forEncrypt, parameters);
return this.cipher.DoFinal(input);
}
catch (CryptoException)
{
throw;
}
}
private byte[] GenerateIV()
{
using (var provider = new RNGCryptoServiceProvider())
{
// 1st block
byte[] result = new byte[this.blockCipher.GetBlockSize()];
provider.GetBytes(result);
return result;
}
}
private static byte[] CombineArrays(byte[] source1, byte[] source2)
{
byte[] result = new byte[source1.Length + source2.Length];
Buffer.BlockCopy(source1, 0, result, 0, source1.Length);
Buffer.BlockCopy(source2, 0, result, source1.Length, source2.Length);
return result;
}
}
Затем просто вызовите методы encrypt и decrypt для нового класса, вот пример использования twofish:
var encrypt = new Encryptor<TwofishEngine, Sha1Digest>(Encoding.UTF8, key, hmacKey);
string cipher = encrypt.Encrypt("TEST");
string plainText = encrypt.Decrypt(cipher);
Так же просто заменить другой блочный шифр, как TripleDES:
var des = new Encryptor<DesEdeEngine, Sha1Digest>(Encoding.UTF8, key, hmacKey);
string cipher = des.Encrypt("TEST");
string plainText = des.Decrypt(cipher);
Наконец, если вы хотите использовать AES с SHA256 HMAC, вы можете сделать следующее:
var aes = new Encryptor<AesEngine, Sha256Digest>(Encoding.UTF8, key, hmacKey);
cipher = aes.Encrypt("TEST");
plainText = aes.Decrypt(cipher);
Самое сложное в шифровании - это ключи, а не алгоритмы. Вам придется подумать о том, где вы храните свои ключи, и, если нужно, как вы их обменяете. Все эти алгоритмы выдержали испытание временем, и их чрезвычайно сложно сломать. Кто-то, кто хочет украсть у вас информацию, не собирается тратить вечность на криптоанализ ваших сообщений, он попытается выяснить, что или где находится ваш ключ. Так что #1 выбирайте ваши ключи разумно, #2 храните их в безопасном месте, если вы используете web.config и IIS, то вы можете зашифровать части web.config и, наконец, если вам нужно обменяться ключами, убедитесь, что ваш Протокол обмена ключами безопасен.
Обновление 2 Изменен метод сравнения, чтобы уменьшить время атаки. Смотрите больше информации здесь http://codahale.com/a-lesson-in-timing-attacks/. Также обновлено значение по умолчанию для отступов PKCS7 и добавлен новый конструктор, чтобы конечный пользователь мог выбирать, какой отступ он хотел бы использовать. Спасибо @CodesInChaos за предложения.
Отказ от ответственности: Это решение следует использовать только для данных в состоянии покоя, которые не доступны для общественности (например, файл конфигурации или БД). Только в этом случае быстрое и грязное решение может считаться лучшим, чем решение @jbtule, из-за более низкого обслуживания.
Исходное сообщение: я нашел ответ jbtule немного сложным для быстрого и грязного защищенного шифрования строки AES, а в ответе Бретта была ошибка с вектором инициализации, являющимся фиксированным значением, делающим его уязвимым для атак заполнения, поэтому я исправил код Бретта и добавлен случайный IV, который добавляется в зашифрованную строку, создавая разные зашифрованные значения для каждого шифрования одного и того же значения:
Шифрование:
public static string Encrypt(string clearText)
{
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
byte[] IV = new byte[15];
rand.NextBytes(IV);
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, IV);
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(IV) + Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
Дешифрирование:
public static string Decrypt(string cipherText)
{
byte[] IV = Convert.FromBase64String(cipherText.Substring(0, 20));
cipherText = cipherText.Substring(20).Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, IV);
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
Замените EncryptionKey своим ключом. В моей реализации ключ сохраняется в файле конфигурации (web.config\app.config), так как его не следует сохранять в жестком коде. Файл конфигурации также должен быть зашифрован, чтобы ключ не был сохранен в виде открытого текста.
protected static string _Key = "";
protected static string EncryptionKey
{
get
{
if (String.IsNullOrEmpty(_Key))
{
_Key = ConfigurationManager.AppSettings["AESKey"].ToString();
}
return _Key;
}
}
Шифрование
public string EncryptString(string inputString)
{
MemoryStream memStream = null;
try
{
byte[] key = { };
byte[] IV = { 12, 21, 43, 17, 57, 35, 67, 27 };
string encryptKey = "aXb2uy4z"; // MUST be 8 characters
key = Encoding.UTF8.GetBytes(encryptKey);
byte[] byteInput = Encoding.UTF8.GetBytes(inputString);
DESCryptoServiceProvider provider = new DESCryptoServiceProvider();
memStream = new MemoryStream();
ICryptoTransform transform = provider.CreateEncryptor(key, IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform, CryptoStreamMode.Write);
cryptoStream.Write(byteInput, 0, byteInput.Length);
cryptoStream.FlushFinalBlock();
}
catch (Exception ex)
{
Response.Write(ex.Message);
}
return Convert.ToBase64String(memStream.ToArray());
}
Дешифрирование:
public string DecryptString(string inputString)
{
MemoryStream memStream = null;
try
{
byte[] key = { };
byte[] IV = { 12, 21, 43, 17, 57, 35, 67, 27 };
string encryptKey = "aXb2uy4z"; // MUST be 8 characters
key = Encoding.UTF8.GetBytes(encryptKey);
byte[] byteInput = new byte[inputString.Length];
byteInput = Convert.FromBase64String(inputString);
DESCryptoServiceProvider provider = new DESCryptoServiceProvider();
memStream = new MemoryStream();
ICryptoTransform transform = provider.CreateDecryptor(key, IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform, CryptoStreamMode.Write);
cryptoStream.Write(byteInput, 0, byteInput.Length);
cryptoStream.FlushFinalBlock();
}
catch (Exception ex)
{
Response.Write(ex.Message);
}
Encoding encoding1 = Encoding.UTF8;
return encoding1.GetString(memStream.ToArray());
}
В следующем примере показано, как зашифровать и расшифровать данные примера:
// This constant is used to determine the keysize of the encryption algorithm in bits.
// We divide this by 8 within the code below to get the equivalent number of bytes.
private const int Keysize = 128;
// This constant determines the number of iterations for the password bytes generation function.
private const int DerivationIterations = 1000;
public static string Encrypt(string plainText, string passPhrase)
{
// Salt and IV is randomly generated each time, but is preprended to encrypted cipher text
// so that the same Salt and IV values can be used when decrypting.
var saltStringBytes = GenerateBitsOfRandomEntropy(16);
var ivStringBytes = GenerateBitsOfRandomEntropy(16);
var plainTextBytes = Encoding.UTF8.GetBytes(plainText);
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 128;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var encryptor = symmetricKey.CreateEncryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
// Create the final bytes as a concatenation of the random salt bytes, the random iv bytes and the cipher bytes.
var cipherTextBytes = saltStringBytes;
cipherTextBytes = cipherTextBytes.Concat(ivStringBytes).ToArray();
cipherTextBytes = cipherTextBytes.Concat(memoryStream.ToArray()).ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
}
}
}
}
}
public static string Decrypt(string cipherText, string passPhrase)
{
// Get the complete stream of bytes that represent:
// [32 bytes of Salt] + [32 bytes of IV] + [n bytes of CipherText]
var cipherTextBytesWithSaltAndIv = Convert.FromBase64String(cipherText);
// Get the saltbytes by extracting the first 32 bytes from the supplied cipherText bytes.
var saltStringBytes = cipherTextBytesWithSaltAndIv.Take(Keysize / 8).ToArray();
// Get the IV bytes by extracting the next 32 bytes from the supplied cipherText bytes.
var ivStringBytes = cipherTextBytesWithSaltAndIv.Skip(Keysize / 8).Take(Keysize / 8).ToArray();
// Get the actual cipher text bytes by removing the first 64 bytes from the cipherText string.
var cipherTextBytes = cipherTextBytesWithSaltAndIv.Skip((Keysize / 8) * 2).Take(cipherTextBytesWithSaltAndIv.Length - ((Keysize / 8) * 2)).ToArray();
using (var password = new Rfc2898DeriveBytes(passPhrase, saltStringBytes, DerivationIterations))
{
var keyBytes = password.GetBytes(Keysize / 8);
using (var symmetricKey = new RijndaelManaged())
{
symmetricKey.BlockSize = 128;
symmetricKey.Mode = CipherMode.CBC;
symmetricKey.Padding = PaddingMode.PKCS7;
using (var decryptor = symmetricKey.CreateDecryptor(keyBytes, ivStringBytes))
{
using (var memoryStream = new MemoryStream(cipherTextBytes))
{
using (var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
var plainTextBytes = new byte[cipherTextBytes.Length];
var decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
}
}
}
}
private static byte[] GenerateBitsOfRandomEntropy(int size)
{
// 32 Bytes will give us 256 bits.
// 16 Bytes will give us 128 bits.
var randomBytes = new byte[size];
using (var rngCsp = new RNGCryptoServiceProvider())
{
// Fill the array with cryptographically secure random bytes.
rngCsp.GetBytes(randomBytes);
}
return randomBytes;
}
Со ссылкой на Encrypt и Decrypt a String в C# я нашел одно из хороших решений:
static readonly string PasswordHash = "P@@Sw0rd";
static readonly string SaltKey = "S@LT&KEY";
static readonly string VIKey = "@1B2c3D4e5F6g7H8";
Для шифрования
public static string Encrypt(string plainText)
{
byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);
byte[] keyBytes = new Rfc2898DeriveBytes(PasswordHash, Encoding.ASCII.GetBytes(SaltKey)).GetBytes(256 / 8);
var symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC, Padding = PaddingMode.Zeros };
var encryptor = symmetricKey.CreateEncryptor(keyBytes, Encoding.ASCII.GetBytes(VIKey));
byte[] cipherTextBytes;
using (var memoryStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write))
{
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
cipherTextBytes = memoryStream.ToArray();
cryptoStream.Close();
}
memoryStream.Close();
}
return Convert.ToBase64String(cipherTextBytes);
}
Для расшифровки
public static string Decrypt(string encryptedText)
{
byte[] cipherTextBytes = Convert.FromBase64String(encryptedText);
byte[] keyBytes = new Rfc2898DeriveBytes(PasswordHash, Encoding.ASCII.GetBytes(SaltKey)).GetBytes(256 / 8);
var symmetricKey = new RijndaelManaged() { Mode = CipherMode.CBC, Padding = PaddingMode.None };
var decryptor = symmetricKey.CreateDecryptor(keyBytes, Encoding.ASCII.GetBytes(VIKey));
var memoryStream = new MemoryStream(cipherTextBytes);
var cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);
byte[] plainTextBytes = new byte[cipherTextBytes.Length];
int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount).TrimEnd("\0".ToCharArray());
}
Для поддержки Mattmanser ответ. Вот пример использования класса MachineKey для шифрования / дешифрования безопасных значений URL.
Следует иметь в виду, что, как упоминалось ранее, при этом будут использоваться параметры конфигурации компьютера ( https://msdn.microsoft.com/en-us/library/ff649308.aspx). Вы можете установить ключ / алгоритм шифрования и дешифрования вручную (это может вам понадобиться, особенно если ваш сайт работает на нескольких серверах) в файле web.config. Вы можете создавать ключи из IIS (см. Здесь: https://blogs.msdn.microsoft.com/vijaysk/2009/05/13/iis-7-tip-10-you-can-generate-machine-keys-from-the-iis-manager/) или может использовать онлайн-генератор ключей машины, например: http://www.developerfusion.com/tools/generatemachinekey/
private static readonly UTF8Encoding Encoder = new UTF8Encoding();
public static string Encrypt(string unencrypted)
{
if (string.IsNullOrEmpty(unencrypted))
return string.Empty;
try
{
var encryptedBytes = MachineKey.Protect(Encoder.GetBytes(unencrypted));
if (encryptedBytes != null && encryptedBytes.Length > 0)
return HttpServerUtility.UrlTokenEncode(encryptedBytes);
}
catch (Exception)
{
return string.Empty;
}
return string.Empty;
}
public static string Decrypt(string encrypted)
{
if (string.IsNullOrEmpty(encrypted))
return string.Empty;
try
{
var bytes = HttpServerUtility.UrlTokenDecode(encrypted);
if (bytes != null && bytes.Length > 0)
{
var decryptedBytes = MachineKey.Unprotect(bytes);
if(decryptedBytes != null && decryptedBytes.Length > 0)
return Encoder.GetString(decryptedBytes);
}
}
catch (Exception)
{
return string.Empty;
}
return string.Empty;
}
Следующий код является улучшенной версией ответа Газели на аналогичный вопрос.
public class EncryptionHelper
{
private Aes aesEncryptor;
public EncryptionHelper()
{
}
private void BuildAesEncryptor(string key)
{
aesEncryptor = Aes.Create();
var pdb = new Rfc2898DeriveBytes(key, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
aesEncryptor.Key = pdb.GetBytes(32);
aesEncryptor.IV = pdb.GetBytes(16);
}
public string EncryptString(string clearText, string key)
{
BuildAesEncryptor(key);
var clearBytes = Encoding.Unicode.GetBytes(clearText);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aesEncryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
}
var encryptedText = Convert.ToBase64String(ms.ToArray());
return encryptedText;
}
}
public string DecryptString(string cipherText, string key)
{
BuildAesEncryptor(key);
cipherText = cipherText.Replace(" ", "+");
var cipherBytes = Convert.FromBase64String(cipherText);
using (var ms = new MemoryStream())
{
using (var cs = new CryptoStream(ms, aesEncryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
}
var clearText = Encoding.Unicode.GetString(ms.ToArray());
return clearText;
}
}
}
Если вы попали сюда в поисках шифрования PGP, в следующем комментарии к примеру того, как использовать шифрование PGP через BouncyCastle, PGPEncryptDecrypt
класс, кажется, работает в основном из коробки:
http://blogs.microsoft.co.il/kim/2009/01/23/pgp-zip-encrypted-files-with-c/
Слишком долго, чтобы вставить сюда, немного изменено: https://gist.github.com/zaus/c0ea1fd8dad5d9590af1
Альтернативой BouncyCastle для шифрования AES-GCM является libsodium-net. Обертывает библиотеку libsodium C. Одним приятным преимуществом является то, что он использует расширение AES-NI в процессорах для очень быстрого шифрования. Недостатком является то, что он не будет работать вообще, если процессор не имеет расширения. Там нет программного обеспечения отступить.
Вот простой пример шифрования строк в C# с использованием режима AES CBC со случайным IV и HMAC и ключами, полученными из пароля, чтобы показать основные движущиеся части:
private byte[] EncryptBytes(byte[] key, byte[] plaintext)
{
using (var cipher = new RijndaelManaged { Key = key })
{
using (var encryptor = cipher.CreateEncryptor())
{
var ciphertext = encryptor.TransformFinalBlock(plaintext, 0, plaintext.Length);
// IV is prepended to ciphertext
return cipher.IV.Concat(ciphertext).ToArray();
}
}
}
private byte[] DecryptBytes(byte[] key, byte[] packed)
{
using (var cipher = new RijndaelManaged { Key = key })
{
int ivSize = cipher.BlockSize / 8;
cipher.IV = packed.Take(ivSize).ToArray();
using (var encryptor = cipher.CreateDecryptor())
{
return encryptor.TransformFinalBlock(packed, ivSize, packed.Length - ivSize);
}
}
}
private byte[] AddMac(byte[] key, byte[] data)
{
using (var hmac = new HMACSHA256(key))
{
var macBytes = hmac.ComputeHash(data);
// HMAC is appended to data
return data.Concat(macBytes).ToArray();
}
}
private bool BadMac(byte[] found, byte[] computed)
{
int mismatch = 0;
// Aim for consistent timing regardless of inputs
for (int i = 0; i < found.Length; i++)
{
mismatch += found[i] == computed[i] ? 0 : 1;
}
return mismatch != 0;
}
private byte[] RemoveMac(byte[] key, byte[] data)
{
using (var hmac = new HMACSHA256(key))
{
int macSize = hmac.HashSize / 8;
var packed = data.Take(data.Length - macSize).ToArray();
var foundMac = data.Skip(packed.Length).ToArray();
var computedMac = hmac.ComputeHash(packed);
if (this.BadMac(foundMac, computedMac))
{
throw new Exception("Bad MAC");
}
return packed;
}
}
private List<byte[]> DeriveTwoKeys(string password)
{
var salt = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };
var kdf = new Rfc2898DeriveBytes(password, salt, 10000);
var bytes = kdf.GetBytes(32); // Two keys 128 bits each
return new List<byte[]> { bytes.Take(16).ToArray(), bytes.Skip(16).ToArray() };
}
public byte[] EncryptString(string password, String message)
{
var keys = this.DeriveTwoKeys(password);
var plaintext = Encoding.UTF8.GetBytes(message);
var packed = this.EncryptBytes(keys[0], plaintext);
return this.AddMac(keys[1], packed);
}
public String DecryptString(string password, byte[] secret)
{
var keys = this.DeriveTwoKeys(password);
var packed = this.RemoveMac(keys[1], secret);
var plaintext = this.DecryptBytes(keys[0], packed);
return Encoding.UTF8.GetString(plaintext);
}
public void Example()
{
var password = "correcthorsebatterystaple";
var secret = this.EncryptString(password, "Hello World");
Console.WriteLine("secret: " + BitConverter.ToString(secret));
var recovered = this.DecryptString(password, secret);
Console.WriteLine(recovered);
}
Хороший пример того, как сделать это с помощью PGPCore с BouncyCastle, очень простое решение: https://blog.bitscry.com/2018/07/05/pgp-encryption-and-decryption-in-c/
Я пробовал разные решения, но это работает лучше всего для меня, в некоторых есть ошибки, но это идеально подходит для меня.
using (PGP pgp = new PGP())
{
// Generate keys
pgp.GenerateKey(@"C:\TEMP\keys\public.asc", @"C:\TEMP\keys\private.asc", "email@email.com", "password");
// Encrypt file
pgp.EncryptFile(@"C:\TEMP\keys\content.txt", @"C:\TEMP\keys\content__encrypted.pgp", @"C:\TEMP\keys\public.asc", true, true);
// Encrypt and sign file
pgp.EncryptFileAndSign(@"C:\TEMP\keys\content.txt", @"C:\TEMP\keys\content__encrypted_signed.pgp", @"C:\TEMP\keys\public.asc", @"C:\TEMP\keys\private.asc", "password", true, true);
// Decrypt file
pgp.DecryptFile(@"C:\TEMP\keys\content__encrypted.pgp", @"C:\TEMP\keys\content__decrypted.txt", @"C:\TEMP\keys\private.asc", "password");
// Decrypt signed file
pgp.DecryptFile(@"C:\TEMP\keys\content__encrypted_signed.pgp", @"C:\TEMP\keys\content__decrypted_signed.txt", @"C:\TEMP\keys\private.asc", "password");
// Encrypt stream
using (FileStream inputFileStream = new FileStream(@"C:\TEMP\keys\content.txt", FileMode.Open))
using (Stream outputFileStream = File.Create(@"C:\TEMP\keys\content__encrypted2.pgp"))
using (Stream publicKeyStream = new FileStream(@"C:\TEMP\keys\public.asc", FileMode.Open))
pgp.EncryptStream(inputFileStream, outputFileStream, publicKeyStream, true, true);
// Decrypt stream
using (FileStream inputFileStream = new FileStream(@"C:\TEMP\keys\content__encrypted2.pgp", FileMode.Open))
using (Stream outputFileStream = File.Create(@"C:\TEMP\keys\content__decrypted2.txt"))
using (Stream privateKeyStream = new FileStream(@"C:\TEMP\keys\private.asc", FileMode.Open))
pgp.DecryptStream(inputFileStream, outputFileStream, privateKeyStream, "password");
}
Это класс, который был размещен здесь Бреттом. Однако я внес небольшое изменение, поскольку получал сообщение об ошибке "Недопустимая длина для массива символов Base-64" при его использовании для строк URL-адресов для шифрования и дешифрования.
public class CryptoURL
{
private static byte[] _salt = Encoding.ASCII.GetBytes("Catto_Salt_Enter_Any_Value99");
/// <summary>
/// Encrypt the given string using AES. The string can be decrypted using
/// DecryptStringAES(). The sharedSecret parameters must match.
/// The SharedSecret for the Password Reset that is used is in the next line
/// string sharedSecret = "OneUpSharedSecret9";
/// </summary>
/// <param name="plainText">The text to encrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for encryption.</param>
public static string EncryptString(string plainText, string sharedSecret)
{
if (string.IsNullOrEmpty(plainText))
throw new ArgumentNullException("plainText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
string outStr = null; // Encrypted string to return
RijndaelManaged aesAlg = null; // RijndaelManaged object used to encrypt the data.
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create a RijndaelManaged object
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Create a decryptor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
// prepend the IV
msEncrypt.Write(BitConverter.GetBytes(aesAlg.IV.Length), 0, sizeof(int));
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
}
outStr = HttpServerUtility.UrlTokenEncode(msEncrypt.ToArray());
//outStr = Convert.ToBase64String(msEncrypt.ToArray());
// you may need to add a reference. right click reference in solution explorer => "add Reference" => .NET tab => select "System.Web"
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
// Return the encrypted bytes from the memory stream.
return outStr;
}
/// <summary>
/// Decrypt the given string. Assumes the string was encrypted using
/// EncryptStringAES(), using an identical sharedSecret.
/// </summary>
/// <param name="cipherText">The text to decrypt.</param>
/// <param name="sharedSecret">A password used to generate a key for decryption.</param>
public static string DecryptString(string cipherText, string sharedSecret)
{
if (string.IsNullOrEmpty(cipherText))
throw new ArgumentNullException("cipherText");
if (string.IsNullOrEmpty(sharedSecret))
throw new ArgumentNullException("sharedSecret");
// Declare the RijndaelManaged object
// used to decrypt the data.
RijndaelManaged aesAlg = null;
// Declare the string used to hold
// the decrypted text.
string plaintext = null;
byte[] inputByteArray;
try
{
// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(sharedSecret, _salt);
// Create the streams used for decryption.
//byte[] bytes = Convert.FromBase64String(cipherText);
inputByteArray = HttpServerUtility.UrlTokenDecode(cipherText);
using (MemoryStream msDecrypt = new MemoryStream(inputByteArray))
{
// Create a RijndaelManaged object
// with the specified key and IV.
aesAlg = new RijndaelManaged();
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
// Get the initialization vector from the encrypted stream
aesAlg.IV = ReadByteArray(msDecrypt);
// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
catch (System.Exception ex)
{
return "ERROR";
//throw ex;
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear();
}
return plaintext;
}
static string ConvertStringArrayToString(string[] array)
{
//
// Concatenate all the elements into a StringBuilder.
//
StringBuilder builder = new StringBuilder();
foreach (string value in array)
{
builder.Append(value);
builder.Append('.');
}
return builder.ToString();
}
private static byte[] ReadByteArray(Stream s)
{
byte[] rawLength = new byte[sizeof(int)];
if (s.Read(rawLength, 0, rawLength.Length) != rawLength.Length)
{
throw new SystemException("Stream did not contain properly formatted byte array");
}
byte[] buffer = new byte[BitConverter.ToInt32(rawLength, 0)];
if (s.Read(buffer, 0, buffer.Length) != buffer.Length)
{
throw new SystemException("Did not read byte array properly");
}
return buffer;
}
}
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Security.Cryptography;
using System.IO;
using System.Text;
/// <summary>
/// Summary description for Encryption
/// </summary>
public class Encryption
{
public TripleDES CreateDES(string key)
{
MD5 md5 = new MD5CryptoServiceProvider();
TripleDES des = new TripleDESCryptoServiceProvider();
des.Key = md5.ComputeHash(Encoding.Unicode.GetBytes(key));
des.IV = new byte[des.BlockSize / 8];
return des;
}
public byte[] Encryptiondata(string PlainText)
{
TripleDES des = CreateDES("DreamMLMKey");
ICryptoTransform ct = des.CreateEncryptor();
byte[] input = Encoding.Unicode.GetBytes(PlainText);
return ct.TransformFinalBlock(input, 0, input.Length);
}
public string Decryptiondata(string CypherText)
{
string stringToDecrypt = CypherText.Replace(" ", "+");
int len = stringToDecrypt.Length;
byte[] inputByteArray = Convert.FromBase64String(stringToDecrypt);
byte[] b = Convert.FromBase64String(CypherText);
TripleDES des = CreateDES("DreamMLMKey");
ICryptoTransform ct = des.CreateDecryptor();
byte[] output = ct.TransformFinalBlock(b, 0, b.Length);
return Encoding.Unicode.GetString(output);
}
public string Decryptiondataurl(string CypherText)
{
string newcyperttext=CypherText.Replace(' ', '+');
byte[] b = Convert.FromBase64String(newcyperttext);
TripleDES des = CreateDES("DreamMLMKey");
ICryptoTransform ct = des.CreateDecryptor();
byte[] output = ct.TransformFinalBlock(b, 0, b.Length);
return Encoding.Unicode.GetString(output);
}
#region encryption & Decription
public string Encrypt(string input, string key)
{
byte[] inputArray = UTF8Encoding.UTF8.GetBytes(input);
TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
tripleDES.Key = UTF8Encoding.UTF8.GetBytes(key);
tripleDES.Mode = CipherMode.ECB;
tripleDES.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tripleDES.CreateEncryptor();
byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
tripleDES.Clear();
return Convert.ToBase64String(resultArray, 0, resultArray.Length);
}
public string Decrypt(string input, string key)
{
byte[] inputArray = Convert.FromBase64String(input);
TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
tripleDES.Key = UTF8Encoding.UTF8.GetBytes(key);
tripleDES.Mode = CipherMode.ECB;
tripleDES.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tripleDES.CreateDecryptor();
byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
tripleDES.Clear();
return UTF8Encoding.UTF8.GetString(resultArray);
}
public string encrypt(string encryptString)
{
string EncryptionKey = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
byte[] clearBytes = Encoding.Unicode.GetBytes(encryptString);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] {
0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76
});
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
encryptString = Convert.ToBase64String(ms.ToArray());
}
}
return encryptString;
}
public string Decrypt(string cipherText)
{
string EncryptionKey = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] {
0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76
});
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
#endregion
}
Шифрование является очень распространенным явлением в программировании. Я думаю, что лучше установить пакет, чтобы выполнить задачу за вас. Может быть, простой проект Nuget с открытым исходным кодом, как Simple Aes Encryption
Ключ находится в файле конфигурации, и поэтому его легко изменить в производственной среде, и я не вижу никаких недостатков
<MessageEncryption>
<EncryptionKey KeySize="256" Key="3q2+796tvu/erb7v3q2+796tvu/erb7v3q2+796tvu8="/>
</MessageEncryption>
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
public class Program
{
public static void Main()
{
var key = Encoding.UTF8.GetBytes("SUkbqO2ycDo7QwpR25kfgmC7f8CoyrZy");
var data = Encoding.UTF8.GetBytes("testData");
//Encrypt data
var encrypted = CryptoHelper.EncryptData(data,key);
//Decrypt data
var decrypted = CryptoHelper.DecryptData(encrypted,key);
//Display result
Console.WriteLine(Encoding.UTF8.GetString(decrypted));
}
}
public static class CryptoHelper
{
public static byte[] EncryptData(byte[] data, byte[] key)
{
using (var aesAlg = Aes.Create())
{
aesAlg.Mode = CipherMode.CBC;
using (var encryptor = aesAlg.CreateEncryptor(key, aesAlg.IV))
{
using (var msEncrypt = new MemoryStream())
{
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);
using (var csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
csEncrypt.Write(data, 0, data.Length);
return msEncrypt.ToArray();
}
}
}
}
public static byte[] DecryptData(byte[] encrypted, byte[] key)
{
var iv = new byte[16];
Buffer.BlockCopy(encrypted, 0, iv, 0, iv.Length);
using (var aesAlg = Aes.Create())
{
aesAlg.Mode = CipherMode.CBC;
using (var decryptor = aesAlg.CreateDecryptor(key, iv))
{
using (var msDecrypt = new MemoryStream(encrypted, iv.Length, encrypted.Length - iv.Length))
{
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (var resultStream = new MemoryStream())
{
csDecrypt.CopyTo(resultStream);
return resultStream.ToArray();
}
}
}
}
}
}
}
У меня есть проект с открытым исходным кодом под названием X509Crypto, который использует сертификаты для шифрования и дешифрования строк. Очень просто использовать. Вот пример того, как его использовать:
1. Используйте интерфейс командной строки (CLI) X509Crypto для создания нового сертификата шифрования и пары ключей.
>x509crypto.exe
X509Crypto> makecert -context user -keysize medium -alias myvault
Certificate with thumbprint B31FE7E7AE5229F8186782742CF579197FA859FD was added to X509Alias "myvault" in the user X509Context
X509Crypto>
2. Используйте команду Encrypt CLI, чтобы добавить секрет в ваш новый X509Alias.
X509Crypto> encrypt -text -alias myvault -context user -secret apikey -in "80EAF03248965AC2B78090"
Secret apikey has been added to X509Alias myvault in the user X509Context
X509Crypto>
3. Укажите секрет в своей программе.
После того, как вы установили X509Alias с добавленным секретом (секретами), легко получить их в своей программе с установленным пакетом Nuget Org.X509Crypto:
using Org.X509Crypto;
namespace SampleApp
{
class Program
{
static void Main(string[] args)
{
var Alias = new X509Alias(@"myvault", X509Context.UserReadOnly);
var apiKey = Alias.RecoverSecret(@"apikey");
}
}
}
Алгоритм AES:
public static class CryptographyProvider
{
public static string EncryptString(string plainText, out string Key)
{
if (plainText == null || plainText.Length <= 0)
throw new ArgumentNullException("plainText");
using (Aes _aesAlg = Aes.Create())
{
Key = Convert.ToBase64String(_aesAlg.Key);
ICryptoTransform _encryptor = _aesAlg.CreateEncryptor(_aesAlg.Key, _aesAlg.IV);
using (MemoryStream _memoryStream = new MemoryStream())
{
_memoryStream.Write(_aesAlg.IV, 0, 16);
using (CryptoStream _cryptoStream = new CryptoStream(_memoryStream, _encryptor, CryptoStreamMode.Write))
{
using (StreamWriter _streamWriter = new StreamWriter(_cryptoStream))
{
_streamWriter.Write(plainText);
}
return Convert.ToBase64String(_memoryStream.ToArray());
}
}
}
}
public static string DecryptString(string cipherText, string Key)
{
if (string.IsNullOrEmpty(cipherText))
throw new ArgumentNullException("cipherText");
if (string.IsNullOrEmpty(Key))
throw new ArgumentNullException("Key");
string plaintext = null;
byte[] _initialVector = new byte[16];
byte[] _Key = Convert.FromBase64String(Key);
byte[] _cipherTextBytesArray = Convert.FromBase64String(cipherText);
byte[] _originalString = new byte[_cipherTextBytesArray.Length - 16];
Array.Copy(_cipherTextBytesArray, 0, _initialVector, 0, _initialVector.Length);
Array.Copy(_cipherTextBytesArray, 16, _originalString, 0, _cipherTextBytesArray.Length - 16);
using (Aes _aesAlg = Aes.Create())
{
_aesAlg.Key = _Key;
_aesAlg.IV = _initialVector;
ICryptoTransform decryptor = _aesAlg.CreateDecryptor(_aesAlg.Key, _aesAlg.IV);
using (MemoryStream _memoryStream = new MemoryStream(_originalString))
{
using (CryptoStream _cryptoStream = new CryptoStream(_memoryStream, decryptor, CryptoStreamMode.Read))
{
using (StreamReader _streamReader = new StreamReader(_cryptoStream))
{
plaintext = _streamReader.ReadToEnd();
}
}
}
}
return plaintext;
}
}
Вот пример того, как шифрование / дешифрование AES-GCM может быть выполнено с использованием пакета Bouncy castle.
Я нашел этот образец, когда гуглил на возможность расшифровать данные из GOlang crypto/aes
апи:
const (
gcmBlockSize = 16 // this is key size
gcmTagSize = 16 // this is mac
gcmStandardNonceSize = 12 // this is nonce
)
func encrypt(data []byte, passphrase string) []byte {
block, _ := aes.NewCipher([]byte(createHash(passphrase)))
gcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
nonce := make([]byte, gcm.NonceSize())
if _, err = io.ReadFull(rand.Reader, nonce); err != nil {
panic(err.Error())
}
ciphertext := gcm.Seal(nonce, nonce, data, nil)
return ciphertext
}
Пример.Net работает как брелок с ключом (256 бит), mac (128 бит) и nonce (96 бит).
Вот простой сниппет от ASP Snippets
using System.Text;
using System.Security.Cryptography;
using System.IO;
private string Encrypt(string clearText)
{
string EncryptionKey = "yourkey";
byte[] clearBytes = Encoding.Unicode.GetBytes(clearText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateEncryptor(), CryptoStreamMode.Write))
{
cs.Write(clearBytes, 0, clearBytes.Length);
cs.Close();
}
clearText = Convert.ToBase64String(ms.ToArray());
}
}
return clearText;
}
private string Decrypt(string cipherText)
{
string EncryptionKey = "yourkey";
cipherText = cipherText.Replace(" ", "+");
byte[] cipherBytes = Convert.FromBase64String(cipherText);
using (Aes encryptor = Aes.Create())
{
Rfc2898DeriveBytes pdb = new Rfc2898DeriveBytes(EncryptionKey, new byte[] { 0x49, 0x76, 0x61, 0x6e, 0x20, 0x4d, 0x65, 0x64, 0x76, 0x65, 0x64, 0x65, 0x76 });
encryptor.Key = pdb.GetBytes(32);
encryptor.IV = pdb.GetBytes(16);
using (MemoryStream ms = new MemoryStream())
{
using (CryptoStream cs = new CryptoStream(ms, encryptor.CreateDecryptor(), CryptoStreamMode.Write))
{
cs.Write(cipherBytes, 0, cipherBytes.Length);
cs.Close();
}
cipherText = Encoding.Unicode.GetString(ms.ToArray());
}
}
return cipherText;
}
Скопировано в мой ответ здесь из аналогичного вопроса: Простое двустороннее шифрование для C#.
Основано на многочисленных ответах и комментариях.
- Случайный вектор инициализации, добавленный к криптографическому тексту (@jbtule)
- Используйте TransformFinalBlock() вместо MemoryStream (@RenniePet)
- Нет предварительно заполненных ключей, чтобы никто не копировал и не вставал катастрофу
- Правильная утилизация и использование шаблонов
Код:
/// <summary>
/// Simple encryption/decryption using a random initialization vector
/// and prepending it to the crypto text.
/// </summary>
/// <remarks>Based on multiple answers in https://stackru.com/questions/165808/simple-two-way-encryption-for-c-sharp </remarks>
public class SimpleAes : IDisposable
{
/// <summary>
/// Initialization vector length in bytes.
/// </summary>
private const int IvBytes = 16;
/// <summary>
/// Must be exactly 16, 24 or 32 characters long.
/// </summary>
private static readonly byte[] Key = Convert.FromBase64String("FILL ME WITH 16, 24 OR 32 CHARS");
private readonly UTF8Encoding _encoder;
private readonly ICryptoTransform _encryptor;
private readonly RijndaelManaged _rijndael;
public SimpleAes()
{
_rijndael = new RijndaelManaged {Key = Key};
_rijndael.GenerateIV();
_encryptor = _rijndael.CreateEncryptor();
_encoder = new UTF8Encoding();
}
public string Decrypt(string encrypted)
{
return _encoder.GetString(Decrypt(Convert.FromBase64String(encrypted)));
}
public void Dispose()
{
_rijndael.Dispose();
_encryptor.Dispose();
}
public string Encrypt(string unencrypted)
{
return Convert.ToBase64String(Encrypt(_encoder.GetBytes(unencrypted)));
}
private byte[] Decrypt(byte[] buffer)
{
// IV is prepended to cryptotext
byte[] iv = buffer.Take(IvBytes).ToArray();
using (ICryptoTransform decryptor = _rijndael.CreateDecryptor(_rijndael.Key, iv))
{
return decryptor.TransformFinalBlock(buffer, IvBytes, buffer.Length - IvBytes);
}
}
private byte[] Encrypt(byte[] buffer)
{
// Prepend cryptotext with IV
byte[] inputBuffer = _rijndael.IV.Concat(buffer).ToArray();
return _encryptor.TransformFinalBlock(inputBuffer, IvBytes, buffer.Length);
}
}
Для простоты я сделал для себя эту функцию, которую я использую для не криптографических целей: замените "вашу фразу-пароль" вашим паролем...
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Security.Cryptography;
using System.IO;
namespace My
{
public class strCrypto
{
// This constant string is used as a "salt" value for the PasswordDeriveBytes function calls.
// This size of the IV (in bytes) must = (keysize / 8). Default keysize is 256, so the IV must be
// 32 bytes long. Using a 16 character string here gives us 32 bytes when converted to a byte array.
private const string initVector = "r5dm5fgm24mfhfku";
private const string passPhrase = "yourpassphrase"; // email password encryption password
// This constant is used to determine the keysize of the encryption algorithm.
private const int keysize = 256;
public static string encryptString(string plainText)
{
//if the plaintext is empty or null string just return an empty string
if (plainText == "" || plainText == null )
{
return "";
}
byte[] initVectorBytes = Encoding.UTF8.GetBytes(initVector);
byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);
PasswordDeriveBytes password = new PasswordDeriveBytes(passPhrase, null);
byte[] keyBytes = password.GetBytes(keysize / 8);
RijndaelManaged symmetricKey = new RijndaelManaged();
symmetricKey.Mode = CipherMode.CBC;
ICryptoTransform encryptor = symmetricKey.CreateEncryptor(keyBytes, initVectorBytes);
MemoryStream memoryStream = new MemoryStream();
CryptoStream cryptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.Write);
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);
cryptoStream.FlushFinalBlock();
byte[] cipherTextBytes = memoryStream.ToArray();
memoryStream.Close();
cryptoStream.Close();
return Convert.ToBase64String(cipherTextBytes);
}
public static string decryptString(string cipherText)
{
//if the ciphertext is empty or null string just return an empty string
if (cipherText == "" || cipherText == null )
{
return "";
}
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
byte[] cipherTextBytes = Convert.FromBase64String(cipherText);
PasswordDeriveBytes password = new PasswordDeriveBytes(passPhrase, null);
byte[] keyBytes = password.GetBytes(keysize / 8);
RijndaelManaged symmetricKey = new RijndaelManaged();
symmetricKey.Mode = CipherMode.CBC;
ICryptoTransform decryptor = symmetricKey.CreateDecryptor(keyBytes, initVectorBytes);
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);
CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read);
byte[] plainTextBytes = new byte[cipherTextBytes.Length];
int decryptedByteCount = cryptoStream.Read(plainTextBytes, 0, plainTextBytes.Length);
memoryStream.Close();
cryptoStream.Close();
return Encoding.UTF8.GetString(plainTextBytes, 0, decryptedByteCount);
}
}
}
Хороший алгоритм безопасного хэширования данных - BCrypt:
Помимо включения соли для защиты от атак радужных таблиц, bcrypt является адаптивной функцией: со временем счетчик итераций может быть увеличен, чтобы сделать его медленнее, поэтому он остается устойчивым к атакам поиска методом "грубой силы" даже при увеличении вычислительной мощности.
Есть хорошая .NET-реализация BCrypt, которая также доступна в виде пакета NuGet.
using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions; // This is for password validation
using System.Security.Cryptography;
using System.Configuration; // This is where the hash functions reside
namespace BullyTracker.Common
{
public class HashEncryption
{
//public string GenerateHashvalue(string thisPassword)
//{
// MD5CryptoServiceProvider md5 = new MD5CryptoServiceProvider();
// byte[] tmpSource;
// byte[] tmpHash;
// tmpSource = ASCIIEncoding.ASCII.GetBytes(thisPassword); // Turn password into byte array
// tmpHash = md5.ComputeHash(tmpSource);
// StringBuilder sOutput = new StringBuilder(tmpHash.Length);
// for (int i = 0; i < tmpHash.Length; i++)
// {
// sOutput.Append(tmpHash[i].ToString("X2")); // X2 formats to hexadecimal
// }
// return sOutput.ToString();
//}
//public Boolean VerifyHashPassword(string thisPassword, string thisHash)
//{
// Boolean IsValid = false;
// string tmpHash = GenerateHashvalue(thisPassword); // Call the routine on user input
// if (tmpHash == thisHash) IsValid = true; // Compare to previously generated hash
// return IsValid;
//}
public string GenerateHashvalue(string toEncrypt, bool useHashing)
{
byte[] keyArray;
byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(toEncrypt);
System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();
// Get the key from config file
string key = (string)settingsReader.GetValue("SecurityKey", typeof(String));
//System.Windows.Forms.MessageBox.Show(key);
if (useHashing)
{
MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
hashmd5.Clear();
}
else
keyArray = UTF8Encoding.UTF8.GetBytes(key);
TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
tdes.Key = keyArray;
tdes.Mode = CipherMode.ECB;
tdes.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tdes.CreateEncryptor();
byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);
tdes.Clear();
return Convert.ToBase64String(resultArray, 0, resultArray.Length);
}
/// <summary>
/// DeCrypt a string using dual encryption method. Return a DeCrypted clear string
/// </summary>
/// <param name="cipherString">encrypted string</param>
/// <param name="useHashing">Did you use hashing to encrypt this data? pass true is yes</param>
/// <returns></returns>
public string Decrypt(string cipherString, bool useHashing)
{
byte[] keyArray;
byte[] toEncryptArray = Convert.FromBase64String(cipherString);
System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();
//Get your key from config file to open the lock!
string key = (string)settingsReader.GetValue("SecurityKey", typeof(String));
if (useHashing)
{
MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
hashmd5.Clear();
}
else
keyArray = UTF8Encoding.UTF8.GetBytes(key);
TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
tdes.Key = keyArray;
tdes.Mode = CipherMode.ECB;
tdes.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tdes.CreateDecryptor();
byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);
tdes.Clear();
return UTF8Encoding.UTF8.GetString(resultArray);
}
}
}
using System;
using System.Data;
using System.Configuration;
using System.Text;
using System.Security.Cryptography;
namespace Encription
{
class CryptorEngine
{
public static string Encrypt(string ToEncrypt, bool useHasing)
{
byte[] keyArray;
byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(ToEncrypt);
//System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();
string Key = "Bhagwati";
if (useHasing)
{
MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(Key));
hashmd5.Clear();
}
else
{
keyArray = UTF8Encoding.UTF8.GetBytes(Key);
}
TripleDESCryptoServiceProvider tDes = new TripleDESCryptoServiceProvider();
tDes.Key = keyArray;
tDes.Mode = CipherMode.ECB;
tDes.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tDes.CreateEncryptor();
byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);
tDes.Clear();
return Convert.ToBase64String(resultArray, 0, resultArray.Length);
}
public static string Decrypt(string cypherString, bool useHasing)
{
byte[] keyArray;
byte[] toDecryptArray = Convert.FromBase64String(cypherString);
//byte[] toEncryptArray = Convert.FromBase64String(cypherString);
//System.Configuration.AppSettingsReader settingReader = new AppSettingsReader();
string key = "Bhagwati";
if (useHasing)
{
MD5CryptoServiceProvider hashmd = new MD5CryptoServiceProvider();
keyArray = hashmd.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
hashmd.Clear();
}
else
{
keyArray = UTF8Encoding.UTF8.GetBytes(key);
}
TripleDESCryptoServiceProvider tDes = new TripleDESCryptoServiceProvider();
tDes.Key = keyArray;
tDes.Mode = CipherMode.ECB;
tDes.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tDes.CreateDecryptor();
try
{
byte[] resultArray = cTransform.TransformFinalBlock(toDecryptArray, 0, toDecryptArray.Length);
tDes.Clear();
return UTF8Encoding.UTF8.GetString(resultArray,0,resultArray.Length);
}
catch (Exception ex)
{
throw ex;
}
}
}
}
Я хочу дать вам мой вклад, с моим кодом для AES Rfc2898DeriveBytes
( здесь документация) algorhytm, написанный на C# (.NET Framework 4) и полностью работающий также для ограниченных платформ, как.NET Compact Framework для Windows Phone 7.0+ (не все платформы поддерживают каждый криптографический метод.NET Framework!).
Я надеюсь, что это может помочь любому!
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
public static class Crypto
{
private static readonly byte[] IVa = new byte[] { 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x11, 0x11, 0x12, 0x13, 0x14, 0x0e, 0x16, 0x17 };
public static string Encrypt(this string text, string salt)
{
try
{
using (Aes aes = new AesManaged())
{
Rfc2898DeriveBytes deriveBytes = new Rfc2898DeriveBytes(Encoding.UTF8.GetString(IVa, 0, IVa.Length), Encoding.UTF8.GetBytes(salt));
aes.Key = deriveBytes.GetBytes(128 / 8);
aes.IV = aes.Key;
using (MemoryStream encryptionStream = new MemoryStream())
{
using (CryptoStream encrypt = new CryptoStream(encryptionStream, aes.CreateEncryptor(), CryptoStreamMode.Write))
{
byte[] cleanText = Encoding.UTF8.GetBytes(text);
encrypt.Write(cleanText, 0, cleanText.Length);
encrypt.FlushFinalBlock();
}
byte[] encryptedData = encryptionStream.ToArray();
string encryptedText = Convert.ToBase64String(encryptedData);
return encryptedText;
}
}
}
catch
{
return String.Empty;
}
}
public static string Decrypt(this string text, string salt)
{
try
{
using (Aes aes = new AesManaged())
{
Rfc2898DeriveBytes deriveBytes = new Rfc2898DeriveBytes(Encoding.UTF8.GetString(IVa, 0, IVa.Length), Encoding.UTF8.GetBytes(salt));
aes.Key = deriveBytes.GetBytes(128 / 8);
aes.IV = aes.Key;
using (MemoryStream decryptionStream = new MemoryStream())
{
using (CryptoStream decrypt = new CryptoStream(decryptionStream, aes.CreateDecryptor(), CryptoStreamMode.Write))
{
byte[] encryptedData = Convert.FromBase64String(text);
decrypt.Write(encryptedData, 0, encryptedData.Length);
decrypt.Flush();
}
byte[] decryptedData = decryptionStream.ToArray();
string decryptedText = Encoding.UTF8.GetString(decryptedData, 0, decryptedData.Length);
return decryptedText;
}
}
}
catch
{
return String.Empty;
}
}
}
}
Вы должны использовать пространство имен, используя System.Security.Cryptography; и useHashing - это тип bool true или false. Строковая переменная "ключ" должна быть одинаковой для шифрования и дешифрования
//Encryption
public string EncryptText(string toEncrypt, bool useHashing)
{
try
{
byte[] keyArray;
byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(toEncrypt);
string key = "String Key Value"; //Based on this key stirng is encrypting
//System.Windows.Forms.MessageBox.Show(key);
//If hashing use get hashcode regards to your key
if (useHashing)
{
MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
//Always release the resources and flush data
//of the Cryptographic service provide. Best Practice
hashmd5.Clear();
}
else
keyArray = UTF8Encoding.UTF8.GetBytes(key);
TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
//set the secret key for the tripleDES algorithm
tdes.Key = keyArray;
//mode of operation. there are other 4 modes. We choose ECB(Electronic code Book)
tdes.Mode = CipherMode.ECB;
//padding mode(if any extra byte added)
tdes.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tdes.CreateEncryptor();
//transform the specified region of bytes array to resultArray
byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);
//Release resources held by TripleDes Encryptor
tdes.Clear();
//Return the encrypted data into unreadable string format
return Convert.ToBase64String(resultArray, 0, resultArray.Length);
}
catch (Exception e)
{
throw e;
}
}
//Decryption
public string DecryptText(string cipherString, bool useHashing)
{
try
{
byte[] keyArray;
//get the byte code of the string
byte[] toEncryptArray = Convert.FromBase64String(cipherString);
string key = "String Key Value"; //Based on this key string is decrypted
if (useHashing)
{
//if hashing was used get the hash code with regards to your key
MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
//release any resource held by the MD5CryptoServiceProvider
hashmd5.Clear();
}
else
{
//if hashing was not implemented get the byte code of the key
keyArray = UTF8Encoding.UTF8.GetBytes(key);
}
TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
//set the secret key for the tripleDES algorithm
tdes.Key = keyArray;
//mode of operation. there are other 4 modes.
//We choose ECB(Electronic code Book)
tdes.Mode = CipherMode.ECB;
//padding mode(if any extra byte added)
tdes.Padding = PaddingMode.PKCS7;
ICryptoTransform cTransform = tdes.CreateDecryptor();
byte[] resultArray = cTransform.TransformFinalBlock
(toEncryptArray, 0, toEncryptArray.Length);
//Release resources held by TripleDes Encryptor
tdes.Clear();
//return the Clear decrypted TEXT
return UTF8Encoding.UTF8.GetString(resultArray);
}
catch (Exception ex)
{
throw ex;
}
}