Нейронная сеть Python с Relu
Я хочу использовать вашу нейронную сеть для добавления целого числа / числа с плавающей запятой с выходом> 1 ou <0. Я не использую сигмовидную функцию, но использую функцию ReLU
Я реализую в Python и NumPy моей нейронной сети с помощью метода ReLU и т.д.
from numpy import exp, array, random, dot
class NeuralNetwork():
def __init__(self):
random.seed(1)
# setting the number of nodes in layer 2 and layer 3
# more nodes --> more confidence in predictions (?)
l2 = 5
l3 = 4
# assign random weights to matrices in network
# format is (no. of nodes in previous layer) x (no. of nodes in following layer)
self.synaptic_weights1 = 2 * random.random((3, l2)) -1
self.synaptic_weights2 = 2 * random.random((l2, l3)) -1
self.synaptic_weights3 = 2 * random.random((l3, 1)) -1
def ReLU(self, x):
return abs(x) * (x > 0)
#return self.relu(x, False)
#return 1/(1+exp(-x))
# derivative of sigmoid function, indicates confidence about existing weight
def ReLU_derivative(self, x):
return 1. * (x > 0)
#return self.relu(x, True)
#return x*(1-x)
# train neural network, adusting synaptic weights each time
def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
for iteration in range(number_of_training_iterations):
# pass training set through our neural network
# a2 means the activations fed to second layer
a2 = self.ReLU(dot(training_set_inputs, self.synaptic_weights1))
a3 = self.ReLU(dot(a2, self.synaptic_weights2))
output = self.ReLU(dot(a3, self.synaptic_weights3))
# calculate 'error'
del4 = (training_set_outputs - output)*self.ReLU_derivative(output)
# find 'errors' in each layer
del3 = dot(self.synaptic_weights3, del4.T)*(self.ReLU_derivative(a3).T)
del2 = dot(self.synaptic_weights2, del3)*(self.ReLU_derivative(a2).T)
# get adjustments (gradients) for each layer
adjustment3 = dot(a3.T, del4)
adjustment2 = dot(a2.T, del3.T)
adjustment1 = dot(training_set_inputs.T, del2.T)
# adjust weights accordingly
self.synaptic_weights1 += adjustment1
self.synaptic_weights2 += adjustment2
self.synaptic_weights3 += adjustment3
def forward_pass(self, inputs):
# pass our inputs through our neural network
a2 = self.ReLU(dot(inputs, self.synaptic_weights1))
a3 = self.ReLU(dot(a2, self.synaptic_weights2))
output = self.ReLU(dot(a3, self.synaptic_weights3))
return output
if __name__ == "__main__":
# initialise single neuron neural network
neural_network = NeuralNetwork()
print ("Random starting synaptic weights (layer 1): ")
print (neural_network.synaptic_weights1)
print ("\nRandom starting synaptic weights (layer 2): ")
print (neural_network.synaptic_weights2)
print ("\nRandom starting synaptic weights (layer 3): ")
print (neural_network.synaptic_weights3)
# the training set.
training_set_inputs = array([[2,2,1],[1,1,1],[1,2,1],[2,2,2]])
training_set_outputs = array([[5,3,4,6]]).T
neural_network.train(training_set_inputs, training_set_outputs, 10000)
print ("\nNew synaptic weights (layer 1) after training: ")
print (neural_network.synaptic_weights1)
print ("\nNew synaptic weights (layer 2) after training: ")
print (neural_network.synaptic_weights2)
print ("\nNew synaptic weights (layer 3) after training: ")
print (neural_network.synaptic_weights3)
# test with new input
print ("\nConsidering new situation [1,2,2] -> ?")
print (neural_network.forward_pass(array([1,2,2])))
проблема в том, что мой код возвращает 0 вместо 5 почему? спасибо за продвижение за вашу помощь