Предотвратить ошибку 503 при очистке Google Scholar
Я написал следующий код для очистки данных со страницы безопасности Google Scholar., Однако всякий раз, когда я запускаю его, я получаю эту ошибку:
Traceback (most recent call last):
File "/Users/.../Documents/GS_Tag_Scraper/scrape-modified.py", line 53, in <module>
getProfileFromTag(each)
File "/Users/.../Documents/GS_Tag_Scraper/scrape-modified.py", line 32, in getProfileFromTag
page = urllib.request.urlopen(url)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 163, in urlopen
return opener.open(url, data, timeout)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 472, in open
response = meth(req, response)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 582, in http_response
'http', request, response, code, msg, hdrs)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 504, in error
result = self._call_chain(*args)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 444, in _call_chain
result = func(*args)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 696, in http_error_302
return self.parent.open(new, timeout=req.timeout)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 472, in open
response = meth(req, response)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 582, in http_response
'http', request, response, code, msg, hdrs)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 510, in error
return self._call_chain(*args)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 444, in _call_chain
result = func(*args)
File "/Users/.../anaconda/lib/python3.5/urllib/request.py", line 590, in http_error_default
raise HTTPError(req.full_url, code, msg, hdrs, fp)
urllib.error.HTTPError: HTTP Error 503: Service Unavailable
Я предполагаю, что это потому, что GS блокирует мои запросы. Как я могу предотвратить это?
Код является:
# -*- coding: utf-8 -*-
from bs4 import BeautifulSoup
import urllib.request
import string
import csv
import time
#Declares array's to store data
name = []
urlList =[]
#Opens and writer header of CSV file
outputFile = open('sample.csv', 'w', newline='')
outputWriter = csv.writer(outputFile)
outputWriter.writerow(['Name', 'URL', 'Total Citations', 'h-index', 'i10-index'])
def getStat (url):
#Given an authors URL it retunrs an array of stats.
url = 'https://scholar.google.pl' + url
page = urllib.request.urlopen(url)
soup = BeautifulSoup(page, 'lxml')
buttons = soup.findAll("td", { "class" : "gsc_rsb_std" })
list=[]
return (list)
def getProfileFromTag(tag):
url = "http://scholar.google.pl/citations?view_op=search_authors&hl=pl&mauthors=label:" + tag
while True:
page = urllib.request.urlopen(url)
soup = BeautifulSoup(page, 'lxml')
mydivs = BeautifulSoup(urllib.request.urlopen(url), 'lxml').findAll("h3", { "class" : "gsc_1usr_name"})
for each in mydivs:
for anchor in each.find_all('a'):
name.append(anchor.text)
urlList.append(anchor['href'])
time.sleep(0.001)
buttons = soup.findAll("button", {"aria-label": "Następna"})
if not buttons:
break
on_click = buttons[0].get('onclick')
url = 'http://scholar.google.pl' + on_click[17:-1]
url = url.encode('utf-8').decode('unicode_escape')
for each in name:
list = getStat(urlList[i])
outputWriter.writerow([each, urlList[i], list[0], list[2], list[4]])
tags = ['security']
for each in tags:
getProfileFromTag(each)
2 ответа
Использование requests
вместе с соответствующими заголовками запросов.
import requests
url = 'https://scholar.google.pl/citations?view_op=search_authors&mauthors=label:security'
request_headers = {
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
'accept-encoding': 'gzip, deflate, br',
'accept-language': 'en-US,en;q=0.8',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36'
}
with requests.Session() as s:
r = s.get(url, headers=request_headers)
В результате вы получите:
Adrian Perrig /citations?user=n-Oret4AAAAJ&hl=pl
Vern Paxson /citations?user=HvwPRJ0AAAAJ&hl=pl
Frans Kaashoek /citations?user=YCoLskoAAAAJ&hl=pl
Mihir Bellare /citations?user=2pW1g5IAAAAJ&hl=pl
Xuemin Shen /citations?user=Bjl3GwoAAAAJ&hl=pl
Helen J. Wang /citations?user=qhu-DxwAAAAJ&hl=pl
Sushil Jajodia /citations?user=lOZ1vHIAAAAJ&hl=pl
Martin Abadi /citations?user=vWTI60AAAAAJ&hl=pl
Jean-Pierre Hubaux /citations?user=W7YBLlEAAAAJ&hl=pl
Ross Anderson /citations?user=WgyDcoUAAAAJ&hl=pl
используя это:
users = soup.findAll('h3', {'class': 'gsc_oai_name'})
for user in users:
name = user.a.text.strip()
link = user.a['href']
print(name, '\t', link)
Вы можете найти заголовки, которые отправляет браузер, изучив вкладку сети инструментов разработчика Chrome.
Я предполагаю, что вы пытались проанализировать токен следующей страницы. Однако, если нет, это связано с тем, что вы не предоставили идентификатор маркера следующей страницы для запроса после его анализа. Или вы достигли предела скорости IP или получили CAPTCHA. К сожалению, заголовков запросов недостаточно.
Идеальным решением, помимо передачи токена следующей страницы, является использование прокси с сервисом решения CAPTCHA.
from bs4 import BeautifulSoup
import requests, lxml, re
def scrape_all_authors():
params = {
"view_op": "search_authors", # author results
"mauthors": "label:security", # search query
"hl": "en", # language
"gl": "us", # country to search from
"astart": 0 # page number
}
authors_is_present = True
while authors_is_present:
# https://docs.python-requests.org/en/master/user/quickstart/#custom-headers
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3538.102 Safari/537.36 Edge/18.19582",
}
html = requests.get("https://scholar.google.com/citations", params=params, headers=headers, timeout=30)
soup = BeautifulSoup(html.text, "lxml")
for author in soup.select(".gs_ai_chpr"):
name = author.select_one(".gs_ai_name a").text
link = f'https://scholar.google.com{author.select_one(".gs_ai_name a")["href"]}'
affiliations = author.select_one(".gs_ai_aff").text
email = author.select_one(".gs_ai_eml").text
try:
cited_by = re.search(r"\d+", author.select_one(".gs_ai_cby").text).group() # Cited by 17143 -> 17143
except: cited_by = None
print(f"extracting authors at page #{params['astart']}.",
name,
link,
affiliations,
email,
cited_by, sep="\n")
# if next page token
if soup.select_one("button.gs_btnPR")["onclick"]:
params["after_author"] = re.search(r"after_author\\x3d(.*)\\x26", str(soup.select_one("button.gs_btnPR")["onclick"])).group(1) # -> XB0HAMS9__8J
params["astart"] += 10
else:
authors_is_present = False
scrape_all_authors()
# output:
'''
extracting authors at page #0.
Johnson Thomas
https://scholar.google.com/citations?hl=en&user=eKLr0EgAAAAJ
Professor of Computer Science, Oklahoma State University
Verified email at cs.okstate.edu
159469
...
extracting authors at page #60.
Bulent Sankur
https://scholar.google.com/citations?hl=en&user=z9FUD8QAAAAJ
Professor of Electrical and Electronics Engineering, Bogazici University
Verified email at boun.edu.tr
16953
'''
В качестве альтернативы вы можете добиться того же, используя API профилей Google Scholar от SerpApi. Это платный API с бесплатным планом.
Разница в том, что вам нужно только перебрать полученный словарь и получить нужные данные без необходимости разбираться, как масштабировать количество запросов, как обходить блокировки от поисковых систем.
Пример кода для интеграции:
from serpapi import GoogleSearch
import os, json
from urllib.parse import urlsplit, parse_qsl
def serpapi_scrape_all_authors():
params = {
"api_key": os.getenv("API_KEY"), # SerpApi API key
"engine": "google_scholar_profiles", # profile results search engine
"mauthors": "blizzard", # search query
}
search = GoogleSearch(params)
profile_results_data = []
profiles_is_present = True
while profiles_is_present:
profile_results = search.get_dict()
for profile in profile_results["profiles"]:
print(f'Currently extracting {profile["name"]} with {profile["author_id"]} ID.')
thumbnail = profile["thumbnail"]
name = profile["name"]
link = profile["link"]
author_id = profile["author_id"]
affiliations = profile["affiliations"]
email = profile.get("email")
cited_by = profile.get("cited_by")
interests = profile.get("interests")
profile_results_data.append({
"thumbnail": thumbnail,
"name": name,
"link": link,
"author_id": author_id,
"email": email,
"affiliations": affiliations,
"cited_by": cited_by,
"interests": interests
})
if "next" in profile_results["pagination"]:
# split URL in parts as a dict() and update search "params" variable to a new page
search.params_dict.update(dict(parse_qsl(urlsplit(profile_results["pagination"]["next"]).query)))
else:
profiles_is_present = False
return profile_results_data
print(json.dumps(serpapi_scrape_all_authors(), indent=2))
# output:
'''
Currently extracting Adam Lobel with _xwYD2sAAAAJ ID.
...
Currently extracting Vladimir Ivanov with rddjbZcAAAAJ ID.
[
{
"thumbnail": "https://scholar.googleusercontent.com/citations?view_op=small_photo&user=_xwYD2sAAAAJ&citpid=3",
"name": "Adam Lobel",
"link": "https://scholar.google.com/citations?hl=en&user=_xwYD2sAAAAJ",
"author_id": "_xwYD2sAAAAJ",
"email": "Verified email at AdamLobel.com",
"affiliations": "Blizzard Entertainment",
"cited_by": 2980,
"interests": [
{
"title": "Gaming",
"serpapi_link": "https://serpapi.com/search.json?engine=google_scholar_profiles&hl=en&mauthors=label%3Agaming",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:gaming"
},
{
"title": "Emotion regulation",
"serpapi_link": "https://serpapi.com/search.json?engine=google_scholar_profiles&hl=en&mauthors=label%3Aemotion_regulation",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:emotion_regulation"
}
]
} ... other results
{
"thumbnail": "https://scholar.google.com/citations/images/avatar_scholar_56.png",
"name": "Vladimir Ivanov",
"link": "https://scholar.google.com/citations?hl=en&user=rddjbZcAAAAJ",
"author_id": "rddjbZcAAAAJ",
"email": null,
"affiliations": "Blizzard Entertainment",
"cited_by": null,
"interests": [
{
"title": "Machine Learning",
"serpapi_link": "https://serpapi.com/search.json?after_author=V8JcAPb___8J&engine=google_scholar_profiles&hl=en&mauthors=label%3Amachine_learning",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:machine_learning"
},
{
"title": "Reinforcement Learning",
"serpapi_link": "https://serpapi.com/search.json?after_author=V8JcAPb___8J&engine=google_scholar_profiles&hl=en&mauthors=label%3Areinforcement_learning",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:reinforcement_learning"
},
{
"title": "Computer Vision",
"serpapi_link": "https://serpapi.com/search.json?after_author=V8JcAPb___8J&engine=google_scholar_profiles&hl=en&mauthors=label%3Acomputer_vision",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:computer_vision"
},
{
"title": "Cinematics",
"serpapi_link": "https://serpapi.com/search.json?after_author=V8JcAPb___8J&engine=google_scholar_profiles&hl=en&mauthors=label%3Acinematics",
"link": "https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:cinematics"
}
]
}
]
'''
Если вы хотите проанализировать исторические органические результаты из Google Scholar, есть специальная запись в блоге « Очистить исторические результаты Google Scholar с использованием моего Python ».
Отказ от ответственности, я работаю в SerpApi.