Может ли Networkx считывать узлы и ребра из разных файлов?
У меня есть CSV-файл, содержащий эти узлы, с соответствующими координатами для каждого, например, так:
node x y
A1 67.8 15.53
A2 108.74 15.53
B1 67.8 25.33
B2 108.74 25.33
C1 67.8 30.22
C2 108.74 30.22
D1 67.8 37.99
D2 108.74 37.99
E1 67.8 43.84
И для каждого из этих узлов у меня есть другой файл с ребрами, который представляет расстояние между каждым подключенным узлом, например:
node1 node2 distance
A1 A2 40.90
A1 B1 9.8
A2 B2 9.8
B1 A1 9.8
...
Итак, что я могу сделать, чтобы добавить узлы и их соответствующие ребра в один и тот же граф?
Я попробовал это, но это не работает:
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import numpy
nodes = pd.read_csv('nodes.csv')
print nodes
G = nx.Graph()
for row in nodes.iterrows():
G.add_node(row[1][0], x=row[1][2],y=row[1][3])
edgelist = pd.read_csv('edges.csv')
print edgelist
for i, elrow in edgelist.iterrows():
G.add_edge(elrow.node1,elrow.node2,weight=elrow.distance)
G.nodes(data=True)
nx.draw(G)
plt.show()
Я новичок в Python, и мне нужно это как часть кода для моей магистерской диссертации. Я использую Python 3.6, но я также установил версию 2.7. Можете ли вы помочь мне сделать эту работу?
1 ответ
В Networkx есть несколько служебных функций, которые могут немного облегчить вашу жизнь. Вы могли бы использовать nx.from_pandas_dataframe
генерировать график прямо из вашего edges
DataFrame:
edges = pd.read_csv('edges.csv', sep='\s+')
G = nx.from_pandas_dataframe(edges, 'node1', 'node2', ['distance'])
а затем вы можете добавить атрибуты узла путем преобразования nodes
DataFrame к списку диктов, затем загружая их в график, G
с G.add_nodes_from(data)
:
nodes = pd.read_csv('nodes.csv', sep='\s+')
data = nodes.set_index('node').to_dict('index').items()
G.add_nodes_from(data)
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
edges = pd.read_csv('edges.csv', sep='\s+')
G = nx.from_pandas_dataframe(edges, 'node1', 'node2', ['distance'])
nodes = pd.read_csv('nodes.csv', sep='\s+')
data = nodes.set_index('node').to_dict('index').items()
G.add_nodes_from(data)
print(G.nodes(data=True))
print(G.edges(data=True))
печать (для G.nodes(data=True)
):
NodeDataView({'D1': {'y': 37.990000000000002, 'x': 67.799999999999997}, 'A1': {'y': 15.529999999999999, 'x': 67.799999999999997}, 'C2': {'y': 30.219999999999999, 'x': 108.73999999999999}, 'B2': {'y': 25.329999999999998, 'x': 108.73999999999999}, 'D2': {'y': 37.990000000000002, 'x': 108.73999999999999}, 'C1': {'y': 30.219999999999999, 'x': 67.799999999999997}, 'A2': {'y': 15.529999999999999, 'x': 108.73999999999999}, 'E1': {'y': 43.840000000000003, 'x': 67.799999999999997}, 'B1': {'y': 25.329999999999998, 'x': 67.799999999999997}})
и для G.edges(data=True)
):
EdgeDataView([('A1', 'A2', {'distance': 40.9}), ('A1', 'B1', {'distance': 9.8}), ('B2', 'A2', {'distance': 9.8})])
from_pandas_dataframe
не работает для networkx v2.
Я нашел здесь правильное имя метода: AttributeError: модуль 'networkx' не имеет атрибута 'from_pandas_dataframe'
И для меня сработало:
G = nx.from_pandas_edgelist(edges, 'src', 'tgt', edge_attr=True)
После этого я смог использовать остальную часть принятого ответа:
data = nodedf.set_index('id').to_dict('index').items()
G.add_nodes_from(data)