[r]: интерпретация результатов блеска, ретрансформирующие оценки
РЕДАКТИРОВАТЬ: В настоящее время я пишу свою магистерскую диссертацию о влиянии определенного инсектицида на колонии шмелей. Я, например, проверял, были ли поврежденные / больные появляющиеся пчелы более распространенными в колониях, которые подвергались воздействию инсектицидов, по сравнению с контролем.
Дизайн исследования является иерархическим. 16 полей были спарены по ландшафтным характеристикам. В каждой паре одно поле было случайным образом назначено для обработки инсектицидом, а другое - контрольное поле. В каждом поле есть 2 коробки, а в каждой коробке 2 улья шмелей. Из каждого улья у меня до десяти куколок на пол.
Вот как выглядят мои данные:
structure(list(pair = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L
), .Label = c("P01", "P02", "P03", "P04", "P05", "P10", "P11",
"P12"), class = "factor"), field = structure(c(6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L), .Label = c("VR02", "VR03",
"VR04", "VR05", "VR06", "VR07", "VR09", "VR12", "VR13", "VR14",
"VR16", "VR17", "VR18", "VR20", "VR21", "VR23"), class = "factor"),
treatment = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L), .Label = c("Clothianidin", "Control"), class = "factor"),
box.nested = c(11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24,
24, 24, 24, 24, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3,
3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 19, 19, 19, 19, 19, 19,
19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14,
31, 31, 31, 31, 31, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32,
32, 32, 32, 32, 15, 15, 15, 15, 15, 16, 16, 16, 18, 18, 18,
18, 18, 18, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18,
5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 21, 21, 21, 21, 21, 21, 21,
21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
10, 10, 10, 10, 10, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 30, 30, 30, 30, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30,
30, 30, 30, 30, 30, 30, 30, 30, 30), hive.nested = c(21L,
21L, 21L, 21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 45L, 45L,
45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 46L, 46L, 48L,
48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 3L, 3L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 37L, 37L, 37L, 37L, 38L, 38L, 38L,
38L, 38L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L,
49L, 49L, 49L, 50L, 50L, 51L, 52L, 25L, 25L, 25L, 26L, 26L,
26L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 61L, 61L, 61L, 61L,
61L, 62L, 62L, 62L, 62L, 64L, 64L, 64L, 64L, 64L, 64L, 64L,
64L, 64L, 64L, 30L, 30L, 30L, 30L, 30L, 32L, 32L, 32L, 36L,
36L, 36L, 36L, 36L, 36L, 34L, 34L, 34L, 34L, 34L, 34L, 34L,
34L, 35L, 35L, 35L, 36L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 41L, 41L,
41L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 43L, 43L,
43L, 43L, 43L, 43L, 44L, 44L, 44L, 44L, 44L, 13L, 14L, 14L,
14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 16L, 16L, 16L, 16L, 16L, 16L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 19L, 20L, 20L, 20L, 20L, 17L, 17L, 17L, 17L,
17L, 17L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 19L,
19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 53L, 53L, 53L, 53L,
54L, 54L, 54L, 54L, 55L, 55L, 55L, 55L, 55L, 55L, 55L, 56L,
56L, 56L, 60L, 60L, 60L, 60L, 57L, 57L, 57L, 57L, 57L, 57L,
57L, 58L, 58L, 58L, 58L, 58L, 58L, 59L, 59L, 59L, 59L, 59L,
59L, 59L, 59L, 60L, 60L, 60L, 60L, 60L, 60L), stage = structure(c(2L,
1L, 1L, 3L, 1L, 1L, 1L, 1L, 2L, 3L, 2L, 2L, 3L, 2L, 2L, 2L,
1L, 3L, 1L, 2L, 3L, 2L, 1L, 3L, 2L, 2L, 1L, 2L, 3L, 2L, 1L,
3L, 2L, 3L, 1L, 1L, 2L, 3L, 1L, 3L, 3L, 3L, 1L, 3L, 2L, 2L,
2L, 2L, 3L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 2L, 2L, 3L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 2L, 2L, 2L,
3L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 3L, 1L, 2L, 3L, 1L, 2L, 3L,
2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 3L, 1L, 3L, 2L, 3L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 3L, 2L, 1L, 3L, 3L, 2L, 3L, 2L,
1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 2L, 3L, 2L,
2L, 2L, 1L, 3L, 2L, 2L, 2L, 1L, 3L, 1L, 3L, 2L, 3L, 3L, 1L,
2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 2L, 2L, 2L, 3L, 1L, 2L, 1L,
3L, 1L, 2L, 1L, 1L, 3L, 3L, 3L, 2L, 1L, 3L, 1L, 3L, 2L, 2L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 1L, 3L, 3L,
3L, 3L, 3L, 3L, 2L, 1L, 2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 1L, 2L, 1L, 1L, 2L, 3L,
3L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 3L, 2L, 2L, 3L, 3L, 3L, 1L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 3L, 3L, 3L, 1L, 2L,
3L, 2L, 1L, 2L, 3L, 1L, 2L, 2L, 1L, 1L, 3L), .Label = c("1",
"2", "3"), class = "factor"), condition = structure(c(2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L,
2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L), .Label = c("d",
"h"), class = "factor"), sex = structure(c(2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("f", "m", "q"
), class = "factor"), diseased = c(0, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,
1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0,
1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0,
0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0)), .Names = c("pair",
"field", "treatment", "box.nested", "hive.nested", "stage", "condition",
"sex", "diseased"), class = "data.frame", row.names = c(5L, 7L,
8L, 9L, 10L, 14L, 15L, 16L, 21L, 23L, 24L, 26L, 28L, 29L, 30L,
31L, 32L, 33L, 34L, 37L, 38L, 39L, 40L, 42L, 45L, 47L, 48L, 49L,
50L, 51L, 52L, 53L, 54L, 55L, 58L, 60L, 66L, 67L, 68L, 72L, 73L,
74L, 77L, 83L, 85L, 87L, 90L, 92L, 95L, 97L, 100L, 104L, 108L,
115L, 117L, 123L, 125L, 133L, 134L, 137L, 144L, 155L, 156L, 157L,
158L, 159L, 160L, 161L, 162L, 163L, 164L, 166L, 169L, 170L, 172L,
175L, 178L, 179L, 180L, 184L, 185L, 189L, 190L, 191L, 192L, 193L,
194L, 195L, 196L, 197L, 199L, 201L, 202L, 203L, 205L, 206L, 207L,
211L, 212L, 213L, 215L, 217L, 221L, 222L, 224L, 226L, 230L, 244L,
247L, 255L, 258L, 262L, 271L, 272L, 274L, 280L, 281L, 284L, 285L,
288L, 289L, 295L, 296L, 297L, 299L, 300L, 305L, 308L, 309L, 312L,
314L, 326L, 327L, 328L, 329L, 330L, 331L, 332L, 333L, 334L, 335L,
356L, 359L, 362L, 364L, 366L, 375L, 378L, 381L, 388L, 389L, 390L,
391L, 392L, 393L, 404L, 405L, 406L, 407L, 408L, 409L, 410L, 412L,
417L, 418L, 420L, 424L, 425L, 426L, 427L, 428L, 429L, 430L, 431L,
432L, 433L, 435L, 436L, 438L, 439L, 440L, 441L, 442L, 443L, 444L,
446L, 447L, 450L, 453L, 454L, 455L, 456L, 458L, 459L, 461L, 462L,
465L, 466L, 468L, 475L, 476L, 477L, 478L, 479L, 480L, 481L, 482L,
483L, 484L, 485L, 486L, 487L, 490L, 491L, 494L, 495L, 496L, 500L,
501L, 508L, 518L, 519L, 521L, 522L, 524L, 525L, 526L, 527L, 528L,
529L, 530L, 531L, 532L, 533L, 534L, 535L, 538L, 540L, 542L, 543L,
544L, 548L, 549L, 551L, 552L, 553L, 554L, 555L, 556L, 557L, 559L,
560L, 563L, 568L, 569L, 571L, 572L, 576L, 577L, 578L, 579L, 580L,
581L, 582L, 583L, 584L, 585L, 587L, 588L, 590L, 594L, 595L, 596L,
600L, 603L, 604L, 605L, 606L, 607L, 608L, 609L, 616L, 618L, 620L,
622L, 626L, 628L, 631L, 632L, 635L, 636L, 638L, 639L, 641L, 646L,
647L, 651L, 652L, 653L, 654L, 655L, 656L, 658L, 659L, 660L, 661L,
663L, 666L, 667L, 668L, 669L, 670L, 673L, 675L, 676L, 678L, 679L,
680L, 681L, 682L, 684L, 685L, 686L, 687L, 688L, 689L, 690L))
Я запустил биномиальные модели блеска из пакета lme4, чтобы проверить, влияет ли инсектицид на наличие признаков болезни / повреждения в колониях шмелей.
damage.prev <- glmer(diseased ~ treatment + sex + stage
+ (1|pair/field/box.nested/hive.nested)
,data=df.cocoons.white,
family=binomial)
Я пытался получить оценки и доверительные интервалы. Благодаря @ Бенджамину я немного приблизился к решению, но оценки все равно кажутся слишком высокими.
Вот как я пытался получить data.frame CI и оценок:
fixed <- fixef(damage.prev)
wald <-confint(damage.prev,method="Wald")
estCloth.damage.ratio <- exp(fixed[1])
estCont.damage.ratio <- exp(fixed[1] + fixed[2])
lwrCloth.damage.ratio <- exp(wald[1,1])
lwrCont.damage.ratio <- exp(wald[1,1] + wald[2,1])
uprCloth.damage.ratio <- exp(wald[1,2])
uprCont.damage.ratio <- exp(wald[1,2] + wald[2,2])
estCloth.damage <- estCloth.damage.ratio/ (1+estCloth.damage.ratio)
estCont.damage <- estCont.damage.ratio / (1+ estCont.damage.ratio)
lwrCloth.damage <- lwrCloth.damage.ratio/ (1+ lwrCloth.damage.ratio)
lwrCont.damage <- lwrCont.damage.ratio /(1+ lwrCont.damage.ratio)
uprCloth.damage <- uprCloth.damage.ratio /(1+uprCloth.damage.ratio)
uprCont.damage <- uprCont.damage.ratio /(1+uprCont.damage.ratio )
treat.damage <- data.frame(Treatment,Estimate,lwr,upr)
Что меня еще смущает, так это высокие оценки, превышающие 94%, но
sum(df.cocoons.white$diseased)/length(df.cocoons.white$diseased)
дает мне менее 70%. Не кажется реалистичным. Есть идеи, что может быть не так?
1 ответ
Ваша модель использует логит-преобразование.
То, как я смотрю на обобщенные линейные модели, заключается в том, что они на самом деле ничем не отличаются от простой линейной регрессии. В простой линейной регрессии ваша переменная ответа непрерывна на (теоретически) всей строке действительных чисел (-Inf, Inf).
В логистической регрессии ваш ответ представляет собой пропорцию, которая непрерывна на интервале [0, 1]. Коэффициент рассчитывает (p / (1-p)), который является непрерывным в интервале [0, inf). Лог шансы log(p / (1-p))
непрерывен в течение интервала (-Inf, Inf).
Это полное преобразование (log(p / (1-p))
) называется преобразованием логита и является довольно стандартным в логистической регрессии.
Результаты вашего glmer
Модель, которая представляет собой версию логистической регрессии со случайными эффектами, использует то же преобразование, поэтому оценочные коэффициенты находятся в масштабе (-Inf, Inf). Если вы хотите, чтобы коэффициенты были равными, вы можете возвести в степень коэффициенты, которые дадут вам шансы, измеренные по шкале (0, Inf), где 1,0 является нулевым значением.