Какой лучший способ сделать математику с фиксированной точкой?
Мне нужно ускорить программу для Nintendo DS, у которой нет FPU, поэтому мне нужно изменить математику с плавающей точкой (эмулируемую и медленную) на фиксированную.
Я начал с того, что изменил числа с плавающей точкой на целые, и всякий раз, когда мне нужно было преобразовать их, я использовал x>>8 для преобразования переменной с фиксированной точкой x в фактическое число и x<<8 для преобразования в фиксированную точку. Вскоре я обнаружил, что невозможно отследить, что нужно преобразовать, и я также понял, что будет трудно изменить точность чисел (в данном случае 8).
Мой вопрос: как мне сделать это проще и быстрее? Должен ли я создать класс FixedPoint или просто определение типа FixedPoint8 или структуру с некоторыми функциями / макросами для их преобразования или что-то еще? Должен ли я поместить что-то в имя переменной, чтобы показать ее фиксированную точку?
9 ответов
Вы можете попробовать мой класс с фиксированной точкой (последние доступны @ https://github.com/eteran/cpp-utilities)
// From: https://github.com/eteran/cpp-utilities/edit/master/Fixed.h
// See also: http://stackru.com/questions/79677/whats-the-best-way-to-do-fixed-point-math
/*
* The MIT License (MIT)
*
* Copyright (c) 2015 Evan Teran
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef FIXED_H_
#define FIXED_H_
#include <ostream>
#include <exception>
#include <cstddef> // for size_t
#include <cstdint>
#include <type_traits>
#include <boost/operators.hpp>
namespace numeric {
template <size_t I, size_t F>
class Fixed;
namespace detail {
// helper templates to make magic with types :)
// these allow us to determine resonable types from
// a desired size, they also let us infer the next largest type
// from a type which is nice for the division op
template <size_t T>
struct type_from_size {
static const bool is_specialized = false;
typedef void value_type;
};
#if defined(__GNUC__) && defined(__x86_64__)
template <>
struct type_from_size<128> {
static const bool is_specialized = true;
static const size_t size = 128;
typedef __int128 value_type;
typedef unsigned __int128 unsigned_type;
typedef __int128 signed_type;
typedef type_from_size<256> next_size;
};
#endif
template <>
struct type_from_size<64> {
static const bool is_specialized = true;
static const size_t size = 64;
typedef int64_t value_type;
typedef uint64_t unsigned_type;
typedef int64_t signed_type;
typedef type_from_size<128> next_size;
};
template <>
struct type_from_size<32> {
static const bool is_specialized = true;
static const size_t size = 32;
typedef int32_t value_type;
typedef uint32_t unsigned_type;
typedef int32_t signed_type;
typedef type_from_size<64> next_size;
};
template <>
struct type_from_size<16> {
static const bool is_specialized = true;
static const size_t size = 16;
typedef int16_t value_type;
typedef uint16_t unsigned_type;
typedef int16_t signed_type;
typedef type_from_size<32> next_size;
};
template <>
struct type_from_size<8> {
static const bool is_specialized = true;
static const size_t size = 8;
typedef int8_t value_type;
typedef uint8_t unsigned_type;
typedef int8_t signed_type;
typedef type_from_size<16> next_size;
};
// this is to assist in adding support for non-native base
// types (for adding big-int support), this should be fine
// unless your bit-int class doesn't nicely support casting
template <class B, class N>
B next_to_base(const N& rhs) {
return static_cast<B>(rhs);
}
struct divide_by_zero : std::exception {
};
template <size_t I, size_t F>
Fixed<I,F> divide(const Fixed<I,F> &numerator, const Fixed<I,F> &denominator, Fixed<I,F> &remainder, typename std::enable_if<type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
typedef typename Fixed<I,F>::next_type next_type;
typedef typename Fixed<I,F>::base_type base_type;
static const size_t fractional_bits = Fixed<I,F>::fractional_bits;
next_type t(numerator.to_raw());
t <<= fractional_bits;
Fixed<I,F> quotient;
quotient = Fixed<I,F>::from_base(next_to_base<base_type>(t / denominator.to_raw()));
remainder = Fixed<I,F>::from_base(next_to_base<base_type>(t % denominator.to_raw()));
return quotient;
}
template <size_t I, size_t F>
Fixed<I,F> divide(Fixed<I,F> numerator, Fixed<I,F> denominator, Fixed<I,F> &remainder, typename std::enable_if<!type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
// NOTE(eteran): division is broken for large types :-(
// especially when dealing with negative quantities
typedef typename Fixed<I,F>::base_type base_type;
typedef typename Fixed<I,F>::unsigned_type unsigned_type;
static const int bits = Fixed<I,F>::total_bits;
if(denominator == 0) {
throw divide_by_zero();
} else {
int sign = 0;
Fixed<I,F> quotient;
if(numerator < 0) {
sign ^= 1;
numerator = -numerator;
}
if(denominator < 0) {
sign ^= 1;
denominator = -denominator;
}
base_type n = numerator.to_raw();
base_type d = denominator.to_raw();
base_type x = 1;
base_type answer = 0;
// egyptian division algorithm
while((n >= d) && (((d >> (bits - 1)) & 1) == 0)) {
x <<= 1;
d <<= 1;
}
while(x != 0) {
if(n >= d) {
n -= d;
answer += x;
}
x >>= 1;
d >>= 1;
}
unsigned_type l1 = n;
unsigned_type l2 = denominator.to_raw();
// calculate the lower bits (needs to be unsigned)
// unfortunately for many fractions this overflows the type still :-/
const unsigned_type lo = (static_cast<unsigned_type>(n) << F) / denominator.to_raw();
quotient = Fixed<I,F>::from_base((answer << F) | lo);
remainder = n;
if(sign) {
quotient = -quotient;
}
return quotient;
}
}
// this is the usual implementation of multiplication
template <size_t I, size_t F>
void multiply(const Fixed<I,F> &lhs, const Fixed<I,F> &rhs, Fixed<I,F> &result, typename std::enable_if<type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
typedef typename Fixed<I,F>::next_type next_type;
typedef typename Fixed<I,F>::base_type base_type;
static const size_t fractional_bits = Fixed<I,F>::fractional_bits;
next_type t(static_cast<next_type>(lhs.to_raw()) * static_cast<next_type>(rhs.to_raw()));
t >>= fractional_bits;
result = Fixed<I,F>::from_base(next_to_base<base_type>(t));
}
// this is the fall back version we use when we don't have a next size
// it is slightly slower, but is more robust since it doesn't
// require and upgraded type
template <size_t I, size_t F>
void multiply(const Fixed<I,F> &lhs, const Fixed<I,F> &rhs, Fixed<I,F> &result, typename std::enable_if<!type_from_size<I+F>::next_size::is_specialized>::type* = 0) {
typedef typename Fixed<I,F>::base_type base_type;
static const size_t fractional_bits = Fixed<I,F>::fractional_bits;
static const size_t integer_mask = Fixed<I,F>::integer_mask;
static const size_t fractional_mask = Fixed<I,F>::fractional_mask;
// more costly but doesn't need a larger type
const base_type a_hi = (lhs.to_raw() & integer_mask) >> fractional_bits;
const base_type b_hi = (rhs.to_raw() & integer_mask) >> fractional_bits;
const base_type a_lo = (lhs.to_raw() & fractional_mask);
const base_type b_lo = (rhs.to_raw() & fractional_mask);
const base_type x1 = a_hi * b_hi;
const base_type x2 = a_hi * b_lo;
const base_type x3 = a_lo * b_hi;
const base_type x4 = a_lo * b_lo;
result = Fixed<I,F>::from_base((x1 << fractional_bits) + (x3 + x2) + (x4 >> fractional_bits));
}
}
/*
* inheriting from boost::operators enables us to be a drop in replacement for base types
* without having to specify all the different versions of operators manually
*/
template <size_t I, size_t F>
class Fixed : boost::operators<Fixed<I,F>> {
static_assert(detail::type_from_size<I + F>::is_specialized, "invalid combination of sizes");
public:
static const size_t fractional_bits = F;
static const size_t integer_bits = I;
static const size_t total_bits = I + F;
typedef detail::type_from_size<total_bits> base_type_info;
typedef typename base_type_info::value_type base_type;
typedef typename base_type_info::next_size::value_type next_type;
typedef typename base_type_info::unsigned_type unsigned_type;
public:
static const size_t base_size = base_type_info::size;
static const base_type fractional_mask = ~((~base_type(0)) << fractional_bits);
static const base_type integer_mask = ~fractional_mask;
public:
static const base_type one = base_type(1) << fractional_bits;
public: // constructors
Fixed() : data_(0) {
}
Fixed(long n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(unsigned long n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(int n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(unsigned int n) : data_(base_type(n) << fractional_bits) {
// TODO(eteran): assert in range!
}
Fixed(float n) : data_(static_cast<base_type>(n * one)) {
// TODO(eteran): assert in range!
}
Fixed(double n) : data_(static_cast<base_type>(n * one)) {
// TODO(eteran): assert in range!
}
Fixed(const Fixed &o) : data_(o.data_) {
}
Fixed& operator=(const Fixed &o) {
data_ = o.data_;
return *this;
}
private:
// this makes it simpler to create a fixed point object from
// a native type without scaling
// use "Fixed::from_base" in order to perform this.
struct NoScale {};
Fixed(base_type n, const NoScale &) : data_(n) {
}
public:
static Fixed from_base(base_type n) {
return Fixed(n, NoScale());
}
public: // comparison operators
bool operator==(const Fixed &o) const {
return data_ == o.data_;
}
bool operator<(const Fixed &o) const {
return data_ < o.data_;
}
public: // unary operators
bool operator!() const {
return !data_;
}
Fixed operator~() const {
Fixed t(*this);
t.data_ = ~t.data_;
return t;
}
Fixed operator-() const {
Fixed t(*this);
t.data_ = -t.data_;
return t;
}
Fixed operator+() const {
return *this;
}
Fixed& operator++() {
data_ += one;
return *this;
}
Fixed& operator--() {
data_ -= one;
return *this;
}
public: // basic math operators
Fixed& operator+=(const Fixed &n) {
data_ += n.data_;
return *this;
}
Fixed& operator-=(const Fixed &n) {
data_ -= n.data_;
return *this;
}
Fixed& operator&=(const Fixed &n) {
data_ &= n.data_;
return *this;
}
Fixed& operator|=(const Fixed &n) {
data_ |= n.data_;
return *this;
}
Fixed& operator^=(const Fixed &n) {
data_ ^= n.data_;
return *this;
}
Fixed& operator*=(const Fixed &n) {
detail::multiply(*this, n, *this);
return *this;
}
Fixed& operator/=(const Fixed &n) {
Fixed temp;
*this = detail::divide(*this, n, temp);
return *this;
}
Fixed& operator>>=(const Fixed &n) {
data_ >>= n.to_int();
return *this;
}
Fixed& operator<<=(const Fixed &n) {
data_ <<= n.to_int();
return *this;
}
public: // conversion to basic types
int to_int() const {
return (data_ & integer_mask) >> fractional_bits;
}
unsigned int to_uint() const {
return (data_ & integer_mask) >> fractional_bits;
}
float to_float() const {
return static_cast<float>(data_) / Fixed::one;
}
double to_double() const {
return static_cast<double>(data_) / Fixed::one;
}
base_type to_raw() const {
return data_;
}
public:
void swap(Fixed &rhs) {
using std::swap;
swap(data_, rhs.data_);
}
public:
base_type data_;
};
// if we have the same fractional portion, but differing integer portions, we trivially upgrade the smaller type
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator+(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l + r;
}
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator-(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l - r;
}
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator*(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l * r;
}
template <size_t I1, size_t I2, size_t F>
typename std::conditional<I1 >= I2, Fixed<I1,F>, Fixed<I2,F>>::type operator/(const Fixed<I1,F> &lhs, const Fixed<I2,F> &rhs) {
typedef typename std::conditional<
I1 >= I2,
Fixed<I1,F>,
Fixed<I2,F>
>::type T;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l / r;
}
template <size_t I, size_t F>
std::ostream &operator<<(std::ostream &os, const Fixed<I,F> &f) {
os << f.to_double();
return os;
}
template <size_t I, size_t F>
const size_t Fixed<I,F>::fractional_bits;
template <size_t I, size_t F>
const size_t Fixed<I,F>::integer_bits;
template <size_t I, size_t F>
const size_t Fixed<I,F>::total_bits;
}
#endif
Он предназначен для замены поплавков / двойников почти без капель и обладает выбираемой точностью. Он использует boost для добавления всех необходимых перегрузок математических операторов, так что вам это также понадобится (я считаю, что это всего лишь зависимость от заголовка, а не от библиотеки).
Кстати, общее использование может быть что-то вроде этого:
using namespace numeric;
typedef Fixed<16, 16> fixed;
fixed f;
Единственное реальное правило заключается в том, что число должно быть добавлено к собственному размеру вашей системы, например 8, 16, 32, 64.
В современных реализациях C++ не будет никакого снижения производительности за использование простых и простых абстракций, таких как конкретные классы. Вычисление с фиксированной запятой - это именно то место, где использование правильно спроектированного класса избавит вас от множества ошибок.
Поэтому вы должны написать класс FixedPoint8. Протестируйте и отладьте его полностью. Если вам нужно убедить себя в его производительности по сравнению с использованием простых целых чисел, измерьте его.
Это избавит вас от многих неприятностей, перенеся сложность вычисления с фиксированной точкой в одно место.
Если хотите, вы можете еще больше повысить полезность своего класса, сделав его шаблоном и заменив старый. FixedPoint8
с, скажем, typedef FixedPoint<short, 8> FixedPoint8;
Но в вашей целевой архитектуре это, вероятно, не является необходимым, поэтому сначала избегайте сложности шаблонов.
Возможно, где-то в Интернете есть хороший класс с фиксированной точкой - я бы начал искать в библиотеках Boost.
Ваш код с плавающей запятой фактически использует десятичную точку? Если так:
Сначала вы должны прочитать статью Рэнди Йейтса о вступлении в математику с фиксированной точкой: http://www.digitalsignallabs.com/fp.pdf
Затем вам нужно выполнить "профилирование" для вашего кода с плавающей запятой, чтобы выяснить соответствующий диапазон значений с фиксированной запятой, необходимых в "критических" точках вашего кода, например, U(5,3) = 5 бит слева, 3 бит направо, без знака.
На этом этапе вы можете применять арифметические правила в упомянутой выше статье; правила определяют, как интерпретировать биты, которые являются результатом арифметических операций. Вы можете написать макросы или функции для выполнения операций.
Удобно хранить версию с плавающей запятой для сравнения результатов с плавающей запятой и результатов с фиксированной запятой.
Когда я впервые столкнулся с числами с фиксированной точкой, я обнаружил, что статья Джо Лемье " Математика с фиксированной точкой" в C очень полезна, и она действительно предлагает один из способов представления значений с фиксированной точкой.
Однако я не использовал его объединенное представление для чисел с фиксированной запятой. В основном у меня есть опыт работы с фиксированной точкой в C, поэтому у меня не было возможности использовать класс. По большей части, тем не менее, я думаю, что определение количества битов дроби в макросе и использование описательных имен переменных делает это довольно простым для работы. Кроме того, я обнаружил, что лучше всего иметь макросы или функции для умножения и особенно деления, или вы быстро получаете нечитаемый код.
Например, с 24,8 значениями:
#include "stdio.h"
/* Declarations for fixed point stuff */
typedef int int_fixed;
#define FRACT_BITS 8
#define FIXED_POINT_ONE (1 << FRACT_BITS)
#define MAKE_INT_FIXED(x) ((x) << FRACT_BITS)
#define MAKE_FLOAT_FIXED(x) ((int_fixed)((x) * FIXED_POINT_ONE))
#define MAKE_FIXED_INT(x) ((x) >> FRACT_BITS)
#define MAKE_FIXED_FLOAT(x) (((float)(x)) / FIXED_POINT_ONE)
#define FIXED_MULT(x, y) ((x)*(y) >> FRACT_BITS)
#define FIXED_DIV(x, y) (((x)<<FRACT_BITS) / (y))
/* tests */
int main()
{
int_fixed fixed_x = MAKE_FLOAT_FIXED( 4.5f );
int_fixed fixed_y = MAKE_INT_FIXED( 2 );
int_fixed fixed_result = FIXED_MULT( fixed_x, fixed_y );
printf( "%.1f\n", MAKE_FIXED_FLOAT( fixed_result ) );
fixed_result = FIXED_DIV( fixed_result, fixed_y );
printf( "%.1f\n", MAKE_FIXED_FLOAT( fixed_result ) );
return 0;
}
Который пишет
9,0 4.5
Обратите внимание, что с этими макросами есть все виды проблем с переполнением целых чисел, я просто хотел, чтобы макросы были простыми. Это всего лишь быстрый и грязный пример того, как я делал это в C. В C++ вы могли бы сделать что-то намного чище, используя перегрузку операторов. На самом деле, вы также можете легко сделать этот код на C намного красивее...
Я думаю, что это многословный способ сказать: я думаю, что можно использовать подход typedef и macro. Пока вы понимаете, какие переменные содержат значения с фиксированной запятой, поддерживать их не сложно, но, вероятно, это будет не так красиво, как класс C++.
Если бы я был на вашем месте, я бы попытался получить некоторые цифры профилирования, чтобы показать узкие места. Если их относительно мало, используйте typedef и макросы. Если вы решите, что вам нужна глобальная замена всех чисел с математикой с фиксированной запятой, то вам, вероятно, будет лучше с классом.
Я бы не использовал плавающую точку на процессоре без специального оборудования для его обработки. Мой совет - рассматривать ВСЕ числа как целые числа, масштабированные до определенного коэффициента. Например, все денежные значения выражены в центах как целые числа, а не как доллары как числа с плавающей точкой. Например, 0,72 представляется как целое число 72.
Сложение и вычитание тогда являются очень простой целочисленной операцией, такой как (0,72 + 1 становится 72 + 100 становится 172 становится 1,72).
Умножение немного сложнее, так как для него требуется целочисленное умножение с последующим уменьшением масштаба, например (0,72 * 2 становится 72 * 200 становится 14400 становится 144 (уменьшение масштаба) становится 1,44).
Это может потребовать специальных функций для выполнения более сложной математики (синус, косинус и т. Д.), Но даже они могут быть ускорены с помощью справочных таблиц. Пример: поскольку вы используете представление с фиксированным значением 2, в этом диапазоне есть только 100 значений (0,0,1] (0-99), а sin / cos повторяется за пределами этого диапазона, поэтому вам нужна только таблица поиска с целыми числами 100.
Приветствия, Пакс.
Изменение представлений с фиксированной точкой обычно называется "масштабированием".
Если вы можете сделать это с классом без потери производительности, то это путь. Это сильно зависит от компилятора и от того, как он встроен. Если использование классов снижает производительность, вам нужен более традиционный подход в стиле Си. Подход ООП обеспечит вам безопасность типов с применением компилятора, которую традиционная реализация только приближает.
У @cibyr хорошая реализация ООП. Теперь о более традиционном.
Чтобы отслеживать, какие переменные масштабируются, вам нужно использовать согласованное соглашение. Сделайте запись в конце каждого имени переменной, чтобы указать, масштабируется ли значение или нет, и запишите макросы SCALE() и UNSCALE(), которые расширяются до x>>8 и x<<8.
#define SCALE(x) (x>>8)
#define UNSCALE(x) (x<<8)
xPositionUnscaled = UNSCALE(10);
xPositionScaled = SCALE(xPositionUnscaled);
Это может показаться дополнительной работой, чтобы использовать такое количество обозначений, но обратите внимание, как вы можете сразу увидеть, что любая строка правильна, не глядя на другие строки. Например:
xPositionScaled = SCALE(xPositionScaled);
очевидно, неправильно, осмотром.
Это вариант венгерской идеи Apps, о которой упоминает Джоэл в этом посте.
Оригинальная версия Tricks of Game Programming Gurus имеет целую главу по реализации математики с фиксированной запятой.
template <int precision = 8> class FixedPoint {
private:
int val_;
public:
inline FixedPoint(int val) : val_ (val << precision) {};
inline operator int() { return val_ >> precision; }
// Other operators...
};
Какой бы путь вы ни выбрали (я бы склонялся к typedef и некоторым макросам CPP для конвертации), вам нужно быть осторожным, чтобы конвертировать туда и обратно с некоторой дисциплиной.
Вы можете обнаружить, что вам никогда не нужно конвертировать туда и обратно. Просто представьте, что все в системе х256.