Гамильтонов путь по преграде из сетки и Python

Я пытаюсь найти любые гамильтоновы пути в данной сетке, которая содержит препятствия в различных узлах. Моя проблема в том, что мой код работает уже несколько дней и еще не закончен. Хотя эта проблема находится в области NP-Complete, из того, что я вижу, я не уверен, что нехватка времени - моя проблема.

В Python мой подход состоял в том, чтобы использовать рекурсию для выполнения поиска в глубину во всех возможных порядках перемещения влево, вправо, вверх и вниз, которые могут быть выполнены через сетку. Я исследовал другие методы решения гамильтоновых путей, но они были более сложными для того, что я сделал, и я не думал, что они понадобятся небольшой сетке.

Ниже приведена сетка, которую я ищу. 0 - открытый узел, 1 - препятствие, а S - начало.

[0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,1,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,1,0,0,1,0,1,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,S]
[0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,1,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0]

Вот пример выходных данных текущей сетки запущенной функции, где 1 теперь также представляет посещенные узлы.

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1]
[1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0]
[1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0]
[1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1]

Тем не менее, даже со скоростью примерно 50000 шагов в секунду код, кажется, никогда не прекращает исследовать правый нижний угол. Например, два 0 в узлах (3,1) и (3,2) никогда не были достигнуты.

Таким образом, это оставляет у меня некоторые вопросы: является ли это просто стандартным симптомом NP-Hard, хотя я пытаюсь использовать только сетку 13x9? Достигаю ли я предела рекурсии Python, заставляя мой код бесконечно перезапускать одни и те же ветви DFS? Или что-то еще мне не хватает?

Это упрощенная версия моего метода поиска:

#examines options of steps at current marker cell and iterates path attempts
def tryStep():
    global path #list of grid movements
    global marker #current cell in examination

    set marker to traveled        
    if whole grid is Traveled:
        print path data
        end program

    #map is incomplete, advance a step
    else:
     if can move Up:
       repeat tryStep()
     if can move left:
       repeat tryStep()
     if can move down:
       repeat tryStep()
     if can move right:
       repeat tryStep()

    #Failure condition reached, must backup a step
    set marker cell to untraveled
    if length of path is 0:
        print 'no path exists'
        end program
    last = path.pop()
    if last == "up":
        move marker cell down

    if last == "left":
        move marker cell right

    if last == "down":
        move marker cell up

    if last == "right":
        move marker cell left
    return

Следовательно, код должен перебирать все возможные пути через сетку, пока не будет сформирован гамильтонов путь. Для справки вот мой фактический код, который я использую:

    '''
Created on Aug 30, 2014

@author: Owner
'''
#Search given grid for hamiltonian path
import datetime

#takes grid cord and returns value
def getVal(x,y):
    global mapWidth
    global mapHeight
    global mapOccupancy

    if (((x < mapWidth) and (x >-1)) and (y < mapHeight and y >-1)):
        return mapOccupancy[y][x]
    else:
        #print "cell not in map"
        return 1
    return

#sets given coord cell value to visted
def travVal(x,y):
    global mapWidth
    global mapHeight
    global mapOccupancy
    if (((x < mapWidth) and (x >-1)) and ((y < mapHeight) and (y >-1)))== True:
        mapOccupancy[y][x] = 1
    else:
        #print "cell not in map"
        return 1
    return

#sets given coord cell value to open    
def clearVal(x,y):
    if (((x < mapWidth) and (x > -1)) and ((y < mapHeight) and (y > -1)))==True:
        mapOccupancy[y][x] = 0
    else:
        #print "cell not in map"
        return 1
    return

#checks if entire map has been traveled 
def mapTraveled():
    isFull = False
    endLoop= False
    complete = True
    for row in mapOccupancy:
        if endLoop ==True:
            isFull = False
            complete = False
            break
        for cell in row:
            if cell == 0:
                complete = False
                endLoop = True
                break
    if complete == True:
        isFull = True
    return isFull


 #examines options of steps at current marker cell and iterates path attempts
def tryStep():
    global path
    global marker
    global goalCell
    global timeEnd
    global timeStart
    global printCount
    travVal(marker[0],marker[1])
    printCount += 1

    #only print current map Occupancy every 100000 steps
    if printCount >= 100000:
        printCount = 0
        print ''
        print marker
        for row in mapOccupancy:
            print row

    if mapTraveled():
        print 'map complete'
        print "path found"
        print marker
        print path
        for row in mapOccupancy:
            print row
        print timeStart
        timeEnd= datetime.datetime.now()
        print timeEnd
        while True:
            a=5

    #if map is incomplete, advance a step
    else:

        #Upwards
        if getVal(marker[0],marker[1]-1) == 0:
            marker = [marker[0],marker[1]-1]
            #print "step: " + str(marker[0])+' '+ str(marker[1])
            path.append('up')
            tryStep()
        #left wards
        if getVal(marker[0]-1,marker[1]) == 0:
            marker = [marker[0]-1,marker[1]]
            #print "step: " + str(marker[0])+' '+ str(marker[1])
            path.append('left')
            tryStep()

        # down wards
        if getVal(marker[0],marker[1]+1) == 0:
            marker = [marker[0],marker[1]+1]
            #print "step: " + str(marker[0])+' '+ str(marker[1])
            path.append('down')
            tryStep()

        #right wards
        if getVal(marker[0]+1,marker[1]) == 0:
            marker = [marker[0]+1,marker[1]]
           # print "step: " + str(marker[0])+' '+ str(marker[1])
            path.append('right')
            tryStep()

    #Failure condition reached, must backup steps
    clearVal(m[0],m[1])

    last = path.pop()
    #print 'backing a step from:'
    #print last
    if last == "up":
        marker = [marker[0],marker[1]+1]

    if last == "left":
        marker = [marker[0]+1,marker[1]]

    if last == "down":
        marker = [marker[0],marker[1]-1]

    if last == "right":
        marker = [marker[0]-1,marker[1]]


    return


if __name__ == '__main__':
    global timeStart
    timeStart = datetime.datetime.now()
    print timeStart

    global timeEnd
    timeEnd= datetime.datetime.now()

    global printCount
    printCount = 0


    global mapHeight
    mapHeight = 9

    global  mapWidth 
    mapWidth =13

    #occupancy grid setup
    r0= [0,0,0,0,0,0,0,0,0,0,0,0,0]
    r1= [0,0,0,0,0,0,1,0,0,0,0,0,0]
    r2= [0,0,0,0,0,0,0,0,0,0,0,0,0]
    r3= [0,0,0,1,0,0, 1 ,0,1,0,0,0,0]
    r4= [0,0,0,0,0,0,0,0,0,0,0,0, 0]
    r5= [0,0,0,0,0,0,0,0,0,0,0,0,0]
    r6= [0,0,0,0,0,0,1,0,0,0,0,0,0]
    r7= [0,0,0,0,0,0,0,0,0,0,0,0,0]
    r8= [0,0,0,0,0,0,0,0,0,0,0,0,0]



    global  mapOccupancy
    mapOccupancy = [r0,r1,r2,r3,r4,r5,r6,r7,r8]

    #record of current trail attempt
    global path
    path = []
    #marker for iterating through grid
    global marker
    start = [12,4]
    #start =[0,2]
    m = start
    global goalCell
    goalCell = [6,3]

    print marker

    tryStep()

    #no path avalible if this point is reached
    print'destination is unreachable'
    print 'last path: '
    for row in mapOccupancy:
        print row
    print path
    print m
    print mapOccupancy
    print timeStart
    timeEnd= datetime.datetime.now()
    print timeEnd

1 ответ

Быстрый и очень грубый расчет, дающий оценку сложности задачи.

У вас есть всего 13*9 == 117 узлы, из них 5 стен, которые выходят 112 открытые узлы. Каждый открытый узел имеет от 2 в 4 соседи, скажем в среднем у них есть 3 соседи (это на самом деле недооценка). Это означает, что количество путей, которые вы должны проверить, составляет около 3^112 ≈ 2.7*10^53,

Конечно, иногда вы сокращаете свой поиск раньше, но оценка остается: количество путей огромно, поэтому нет смысла проверять их все с помощью обратного отслеживания методом перебора.

Другие вопросы по тегам