Логарифм большого десятичного числа
Как я могу рассчитать логарифм BigDecimal? Кто-нибудь знает какие-либо алгоритмы, которые я могу использовать?
До сих пор я прибегал к помощи (бесполезной) идеи простого преобразования в double и использования Math.log.
Я обеспечу точность требуемого ответа.
редактировать: любая база будет делать. Если будет проще в базе х, я сделаю это.
11 ответов
Java Number Cruncher: Руководство Java для программистов по численным вычислениям предоставляет решение с использованием метода Ньютона. Исходный код из книги доступен здесь. Следующее было взято из главы 12.5 Функции больших десятичников (p330 и p331):
/**
* Compute the natural logarithm of x to a given scale, x > 0.
*/
public static BigDecimal ln(BigDecimal x, int scale)
{
// Check that x > 0.
if (x.signum() <= 0) {
throw new IllegalArgumentException("x <= 0");
}
// The number of digits to the left of the decimal point.
int magnitude = x.toString().length() - x.scale() - 1;
if (magnitude < 3) {
return lnNewton(x, scale);
}
// Compute magnitude*ln(x^(1/magnitude)).
else {
// x^(1/magnitude)
BigDecimal root = intRoot(x, magnitude, scale);
// ln(x^(1/magnitude))
BigDecimal lnRoot = lnNewton(root, scale);
// magnitude*ln(x^(1/magnitude))
return BigDecimal.valueOf(magnitude).multiply(lnRoot)
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
}
/**
* Compute the natural logarithm of x to a given scale, x > 0.
* Use Newton's algorithm.
*/
private static BigDecimal lnNewton(BigDecimal x, int scale)
{
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal term;
// Convergence tolerance = 5*(10^-(scale+1))
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
// Loop until the approximations converge
// (two successive approximations are within the tolerance).
do {
// e^x
BigDecimal eToX = exp(x, sp1);
// (e^x - n)/e^x
term = eToX.subtract(n)
.divide(eToX, sp1, BigDecimal.ROUND_DOWN);
// x - (e^x - n)/e^x
x = x.subtract(term);
Thread.yield();
} while (term.compareTo(tolerance) > 0);
return x.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
/**
* Compute the integral root of x to a given scale, x >= 0.
* Use Newton's algorithm.
* @param x the value of x
* @param index the integral root value
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal intRoot(BigDecimal x, long index,
int scale)
{
// Check that x >= 0.
if (x.signum() < 0) {
throw new IllegalArgumentException("x < 0");
}
int sp1 = scale + 1;
BigDecimal n = x;
BigDecimal i = BigDecimal.valueOf(index);
BigDecimal im1 = BigDecimal.valueOf(index-1);
BigDecimal tolerance = BigDecimal.valueOf(5)
.movePointLeft(sp1);
BigDecimal xPrev;
// The initial approximation is x/index.
x = x.divide(i, scale, BigDecimal.ROUND_HALF_EVEN);
// Loop until the approximations converge
// (two successive approximations are equal after rounding).
do {
// x^(index-1)
BigDecimal xToIm1 = intPower(x, index-1, sp1);
// x^index
BigDecimal xToI =
x.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// n + (index-1)*(x^index)
BigDecimal numerator =
n.add(im1.multiply(xToI))
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// (index*(x^(index-1))
BigDecimal denominator =
i.multiply(xToIm1)
.setScale(sp1, BigDecimal.ROUND_HALF_EVEN);
// x = (n + (index-1)*(x^index)) / (index*(x^(index-1)))
xPrev = x;
x = numerator
.divide(denominator, sp1, BigDecimal.ROUND_DOWN);
Thread.yield();
} while (x.subtract(xPrev).abs().compareTo(tolerance) > 0);
return x;
}
/**
* Compute e^x to a given scale.
* Break x into its whole and fraction parts and
* compute (e^(1 + fraction/whole))^whole using Taylor's formula.
* @param x the value of x
* @param scale the desired scale of the result
* @return the result value
*/
public static BigDecimal exp(BigDecimal x, int scale)
{
// e^0 = 1
if (x.signum() == 0) {
return BigDecimal.valueOf(1);
}
// If x is negative, return 1/(e^-x).
else if (x.signum() == -1) {
return BigDecimal.valueOf(1)
.divide(exp(x.negate(), scale), scale,
BigDecimal.ROUND_HALF_EVEN);
}
// Compute the whole part of x.
BigDecimal xWhole = x.setScale(0, BigDecimal.ROUND_DOWN);
// If there isn't a whole part, compute and return e^x.
if (xWhole.signum() == 0) return expTaylor(x, scale);
// Compute the fraction part of x.
BigDecimal xFraction = x.subtract(xWhole);
// z = 1 + fraction/whole
BigDecimal z = BigDecimal.valueOf(1)
.add(xFraction.divide(
xWhole, scale,
BigDecimal.ROUND_HALF_EVEN));
// t = e^z
BigDecimal t = expTaylor(z, scale);
BigDecimal maxLong = BigDecimal.valueOf(Long.MAX_VALUE);
BigDecimal result = BigDecimal.valueOf(1);
// Compute and return t^whole using intPower().
// If whole > Long.MAX_VALUE, then first compute products
// of e^Long.MAX_VALUE.
while (xWhole.compareTo(maxLong) >= 0) {
result = result.multiply(
intPower(t, Long.MAX_VALUE, scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
xWhole = xWhole.subtract(maxLong);
Thread.yield();
}
return result.multiply(intPower(t, xWhole.longValue(), scale))
.setScale(scale, BigDecimal.ROUND_HALF_EVEN);
}
Хакерский маленький алгоритм, который отлично работает для больших чисел, использует соотношение log(AB) = log(A) + log(B)
, Вот как это сделать в базе 10 (которую вы можете легко преобразовать в любую другую базу логарифмов):
Подсчитайте количество десятичных цифр в ответе. Это неотъемлемая часть вашего логарифма, плюс один. Пример:
floor(log10(123456)) + 1
6, так как 123456 имеет 6 цифр.Вы можете остановиться здесь, если все, что вам нужно, это целая часть логарифма: просто вычтите 1 из результата шага 1.
Чтобы получить дробную часть логарифма, разделите число на
10^(number of digits)
, а затем вычислить журнал, используяmath.log10()
(или что-то еще; используйте простое приближение ряда, если больше ничего не доступно), и добавьте его к целочисленной части. Пример: получить дробную частьlog10(123456)
вычислитьmath.log10(0.123456) = -0.908...
и добавьте его к результату шага 1:6 + -0.908 = 5.092
, которыйlog10(123456)
, Обратите внимание, что вы в основном просто добавляете десятичную точку к началу большого числа; вероятно, есть хороший способ оптимизировать это в вашем случае использования, и для действительно больших чисел вам даже не нужно беспокоиться о захвате всех цифр -log10(0.123)
отличное приближение кlog10(0.123456789)
,
Этот супер быстрый, потому что:
- нет
toString()
- нет
BigInteger
математика (ньютоновская / продолжение) - Даже не создание нового
BigInteger
- Использует только фиксированное количество очень быстрых операций
Один вызов занимает около 20 микросекунд (около 50 тыс. Вызовов в секунду)
Но:
- Работает только для
BigInteger
Обходной путь для BigDecimal
(не проверено на скорость):
- Смещайте десятичную точку, пока значение не станет> 2^53
- использование
toBigInteger()
(использует одинdiv
внутри)
Этот алгоритм использует тот факт, что лог может быть рассчитан как сумма показателя степени и лог мантиссы. например:
12345 имеет 5 цифр, поэтому лог 10 в базе составляет от 4 до 5. лог (12345) = 4 + лог (1,2345) = 4,09149... (лог 10 базы)
Эта функция вычисляет log 2 базы, потому что нахождение количества занятых битов тривиально.
public double log(BigInteger val)
{
// Get the minimum number of bits necessary to hold this value.
int n = val.bitLength();
// Calculate the double-precision fraction of this number; as if the
// binary point was left of the most significant '1' bit.
// (Get the most significant 53 bits and divide by 2^53)
long mask = 1L << 52; // mantissa is 53 bits (including hidden bit)
long mantissa = 0;
int j = 0;
for (int i = 1; i < 54; i++)
{
j = n - i;
if (j < 0) break;
if (val.testBit(j)) mantissa |= mask;
mask >>>= 1;
}
// Round up if next bit is 1.
if (j > 0 && val.testBit(j - 1)) mantissa++;
double f = mantissa / (double)(1L << 52);
// Add the logarithm to the number of bits, and subtract 1 because the
// number of bits is always higher than necessary for a number
// (ie. log2(val)<n for every val).
return (n - 1 + Math.log(f) * 1.44269504088896340735992468100189213742664595415298D);
// Magic number converts from base e to base 2 before adding. For other
// bases, correct the result, NOT this number!
}
Вы можете разложить его, используя
log(a * 10^b) = log(a) + b * log(10)
В принципе b+1
будет количество цифр в числе, и a
будет значение от 0 до 1, которое вы можете вычислить логарифм с помощью регулярного double
арифметика.
Или есть математические приемы, которые вы можете использовать - например, логарифмы чисел, близких к 1, могут быть вычислены путем расширения ряда
ln(x + 1) = x - x^2/2 + x^3/3 - x^4/4 + ...
В зависимости от того, какое число вы пытаетесь взять логарифм, может быть что-то вроде этого вы можете использовать.
РЕДАКТИРОВАТЬ: Чтобы получить логарифм в базе 10, вы можете разделить натуральный логарифм на ln(10)
или аналогично для любой другой базы.
Если все, что вам нужно, это найти полномочия 10 в числе, которое вы можете использовать:
public int calculatePowersOf10(BigDecimal value)
{
return value.round(new MathContext(1)).scale() * -1;
}
Вот что я придумал:
//http://everything2.com/index.pl?node_id=946812
public BigDecimal log10(BigDecimal b, int dp)
{
final int NUM_OF_DIGITS = dp+2; // need to add one to get the right number of dp
// and then add one again to get the next number
// so I can round it correctly.
MathContext mc = new MathContext(NUM_OF_DIGITS, RoundingMode.HALF_EVEN);
//special conditions:
// log(-x) -> exception
// log(1) == 0 exactly;
// log of a number lessthan one = -log(1/x)
if(b.signum() <= 0)
throw new ArithmeticException("log of a negative number! (or zero)");
else if(b.compareTo(BigDecimal.ONE) == 0)
return BigDecimal.ZERO;
else if(b.compareTo(BigDecimal.ONE) < 0)
return (log10((BigDecimal.ONE).divide(b,mc),dp)).negate();
StringBuffer sb = new StringBuffer();
//number of digits on the left of the decimal point
int leftDigits = b.precision() - b.scale();
//so, the first digits of the log10 are:
sb.append(leftDigits - 1).append(".");
//this is the algorithm outlined in the webpage
int n = 0;
while(n < NUM_OF_DIGITS)
{
b = (b.movePointLeft(leftDigits - 1)).pow(10, mc);
leftDigits = b.precision() - b.scale();
sb.append(leftDigits - 1);
n++;
}
BigDecimal ans = new BigDecimal(sb.toString());
//Round the number to the correct number of decimal places.
ans = ans.round(new MathContext(ans.precision() - ans.scale() + dp, RoundingMode.HALF_EVEN));
return ans;
}
Java-реализация псевдокода Meower68, которую я протестировал с несколькими цифрами:
public static BigDecimal log(int base_int, BigDecimal x) {
BigDecimal result = BigDecimal.ZERO;
BigDecimal input = new BigDecimal(x.toString());
int decimalPlaces = 100;
int scale = input.precision() + decimalPlaces;
int maxite = 10000;
int ite = 0;
BigDecimal maxError_BigDecimal = new BigDecimal(BigInteger.ONE,decimalPlaces + 1);
System.out.println("maxError_BigDecimal " + maxError_BigDecimal);
System.out.println("scale " + scale);
RoundingMode a_RoundingMode = RoundingMode.UP;
BigDecimal two_BigDecimal = new BigDecimal("2");
BigDecimal base_BigDecimal = new BigDecimal(base_int);
while (input.compareTo(base_BigDecimal) == 1) {
result = result.add(BigDecimal.ONE);
input = input.divide(base_BigDecimal, scale, a_RoundingMode);
}
BigDecimal fraction = new BigDecimal("0.5");
input = input.multiply(input);
BigDecimal resultplusfraction = result.add(fraction);
while (((resultplusfraction).compareTo(result) == 1)
&& (input.compareTo(BigDecimal.ONE) == 1)) {
if (input.compareTo(base_BigDecimal) == 1) {
input = input.divide(base_BigDecimal, scale, a_RoundingMode);
result = result.add(fraction);
}
input = input.multiply(input);
fraction = fraction.divide(two_BigDecimal, scale, a_RoundingMode);
resultplusfraction = result.add(fraction);
if (fraction.abs().compareTo(maxError_BigDecimal) == -1){
break;
}
if (maxite == ite){
break;
}
ite ++;
}
MathContext a_MathContext = new MathContext(((decimalPlaces - 1) + (result.precision() - result.scale())),RoundingMode.HALF_UP);
BigDecimal roundedResult = result.round(a_MathContext);
BigDecimal strippedRoundedResult = roundedResult.stripTrailingZeros();
//return result;
//return result.round(a_MathContext);
return strippedRoundedResult;
}
Я искал эту точную вещь и в конечном счете пошел с продолженным подходом дроби. Продолжение фракции можно найти здесь или здесь
Код:
import java.math.BigDecimal;
import java.math.MathContext;
public static long ITER = 1000;
public static MathContext context = new MathContext( 100 );
public static BigDecimal ln(BigDecimal x) {
if (x.equals(BigDecimal.ONE)) {
return BigDecimal.ZERO;
}
x = x.subtract(BigDecimal.ONE);
BigDecimal ret = new BigDecimal(ITER + 1);
for (long i = ITER; i >= 0; i--) {
BigDecimal N = new BigDecimal(i / 2 + 1).pow(2);
N = N.multiply(x, context);
ret = N.divide(ret, context);
N = new BigDecimal(i + 1);
ret = ret.add(N, context);
}
ret = x.divide(ret, context);
return ret;
}
Алгоритм псевдокода для логарифмирования.
Предполагая, что мы хотим log_n из х
result = 0;
base = n;
input = x;
while (input > base)
result++;
input /= base;
fraction = 1/2;
input *= input;
while (((result + fraction) > result) && (input > 1))
if (input > base)
input /= base;
result += fraction;
input *= input;
fraction /= 2.0;
Большой цикл while может показаться немного запутанным.
На каждом проходе вы можете либо ввести квадрат в квадрат или получить квадратный корень из своей базы; в любом случае, вы должны разделить вашу долю на 2. Я считаю, что квадрат ввода и оставление базы в покое, чтобы быть более точным.
Если ввод идет в 1, мы закончили. Лог 1 для любой базы равен 0, что означает, что нам больше не нужно добавлять.
если (результат + дробь) не больше результата, то мы достигли предела точности для нашей системы нумерации. Мы можем остановиться.
Очевидно, что если вы работаете с системой, которая имеет сколь угодно много цифр точности, вам нужно добавить что-то еще, чтобы ограничить цикл.
Старый вопрос, но я на самом деле думаю, что этот ответ предпочтительнее. Он имеет хорошую точность и поддерживает аргументы практически любого размера.
private static final double LOG10 = Math.log(10.0);
/**
* Computes the natural logarithm of a BigDecimal
*
* @param val Argument: a positive BigDecimal
* @return Natural logarithm, as in Math.log()
*/
public static double logBigDecimal(BigDecimal val) {
return logBigInteger(val.unscaledValue()) + val.scale() * Math.log(10.0);
}
private static final double LOG2 = Math.log(2.0);
/**
* Computes the natural logarithm of a BigInteger. Works for really big
* integers (practically unlimited)
*
* @param val Argument, positive integer
* @return Natural logarithm, as in <tt>Math.log()</tt>
*/
public static double logBigInteger(BigInteger val) {
int blex = val.bitLength() - 1022; // any value in 60..1023 is ok
if (blex > 0)
val = val.shiftRight(blex);
double res = Math.log(val.doubleValue());
return blex > 0 ? res + blex * LOG2 : res;
}
Основная логика (logBigInteger
метод) скопирован из этого другого моего ответа.
Я создал функцию для BigInteger, но ее можно легко изменить для BigDecimal. Разобрать журнал и использовать некоторые его свойства - вот что я делаю, но получаю только двойную точность. Но это работает для любой базы.:)
public double BigIntLog(BigInteger bi, double base) {
// Convert the BigInteger to BigDecimal
BigDecimal bd = new BigDecimal(bi);
// Calculate the exponent 10^exp
BigDecimal diviser = new BigDecimal(10);
diviser = diviser.pow(bi.toString().length()-1);
// Convert the BigDecimal from Integer to a decimal value
bd = bd.divide(diviser);
// Convert the BigDecimal to double
double bd_dbl = bd.doubleValue();
// return the log value
return (Math.log10(bd_dbl)+bi.toString().length()-1)/Math.log10(base);
}