Перечисление в строку в современном C++11 / C++14 / C++17 и будущем C++20

Вопреки всем другим подобным вопросам, этот вопрос касается использования новых функций C++.

Прочитав много ответов, я так и не нашел ни одного:

  • Элегантный способ с использованием новых функций C++ 11, C++ 14 или C++17
  • Или что-то готовое к использованию в Boost
  • Еще что-то запланировано на C++20

пример

Пример часто лучше длинного объяснения.
Вы можете скомпилировать и запустить этот фрагмент на Coliru.
( Другой предыдущий пример также доступен)

#include <map>
#include <iostream>

struct MyClass
{
    enum class MyEnum : char {
        AAA = -8,
        BBB = '8',
        CCC = AAA + BBB
    };
};

// Replace magic() by some faster compile-time generated code
// (you're allowed to replace the return type with std::string
// if that's easier for you)
const char* magic (MyClass::MyEnum e)
{
    const std::map<MyClass::MyEnum,const char*> MyEnumStrings {
        { MyClass::MyEnum::AAA, "MyClass::MyEnum::AAA" },
        { MyClass::MyEnum::BBB, "MyClass::MyEnum::BBB" },
        { MyClass::MyEnum::CCC, "MyClass::MyEnum::CCC" }
    };
    auto   it  = MyEnumStrings.find(e);
    return it == MyEnumStrings.end() ? "Out of range" : it->second;
}

int main()
{
   std::cout << magic(MyClass::MyEnum::AAA) <<'\n';
   std::cout << magic(MyClass::MyEnum::BBB) <<'\n';
   std::cout << magic(MyClass::MyEnum::CCC) <<'\n';
}

Ограничения

  • Пожалуйста, не неоценимое дублирование других ответов или основной ссылки.
  • Пожалуйста, избегайте раздутых ответов на основе макросов или попытайтесь уменьшить #define накладные расходы как можно меньше.
  • Пожалуйста, не руководство enum -> string отображение.

Хорошо бы иметь

  • Служба поддержки enum значения, начинающиеся с числа, отличного от нуля
  • Поддержка отрицательная enum ценности
  • Поддержка фрагментирована enum ценности
  • Служба поддержки class enum (C++ 11)
  • Служба поддержки class enum : <type> иметь любой разрешенный <type> (C++ 11)
  • Преобразования во время компиляции (не во время выполнения) в строку,
    или, по крайней мере, быстрое выполнение во время выполнения (например, std::map не очень хорошая идея...)
  • constexpr (C++ 11, расслаблено в C++ 14)
  • noexcept (C++ 11)
  • фрагмент C++14/C++17 дружественный
  • C++ Современное состояние

Одной из возможных идей может быть использование возможностей компилятора C++ для генерации кода C++ во время компиляции с использованием трюков метапрограммирования, основанных на variadic template class а также constexpr функции...

35 ответов

Решение

Это похоже на Юрия Финкельштейна; но не требуется повышение. Я использую карту, чтобы вы могли назначать любые значения перечислениям в любом порядке.

Объявление перечислимого класса как:

DECLARE_ENUM_WITH_TYPE(TestEnumClass, int32_t, ZERO = 0x00, TWO = 0x02, ONE = 0x01, THREE = 0x03, FOUR);

Следующий код автоматически создаст класс enum и перегрузку:

  • '+' '+ =' для std:: string
  • "<<" для потоков
  • '~' просто для преобразования в строку (подойдет любой унарный оператор, но лично мне не нравится это для ясности)
  • '*' чтобы получить количество перечислений

Не требуется повышение, все необходимые функции предоставляются.

Код:

#include <algorithm>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>

#define STRING_REMOVE_CHAR(str, ch) str.erase(std::remove(str.begin(), str.end(), ch), str.end())

std::vector<std::string> splitString(std::string str, char sep = ',') {
    std::vector<std::string> vecString;
    std::string item;

    std::stringstream stringStream(str);

    while (std::getline(stringStream, item, sep))
    {
        vecString.push_back(item);
    }

    return vecString;
}

#define DECLARE_ENUM_WITH_TYPE(E, T, ...)                                                                     \
    enum class E : T                                                                                          \
    {                                                                                                         \
        __VA_ARGS__                                                                                           \
    };                                                                                                        \
    std::map<T, std::string> E##MapName(generateEnumMap<T>(#__VA_ARGS__));                                    \
    std::ostream &operator<<(std::ostream &os, E enumTmp)                                                     \
    {                                                                                                         \
        os << E##MapName[static_cast<T>(enumTmp)];                                                            \
        return os;                                                                                            \
    }                                                                                                         \
    size_t operator*(E enumTmp) { (void) enumTmp; return E##MapName.size(); }                                 \
    std::string operator~(E enumTmp) { return E##MapName[static_cast<T>(enumTmp)]; }                          \
    std::string operator+(std::string &&str, E enumTmp) { return str + E##MapName[static_cast<T>(enumTmp)]; } \
    std::string operator+(E enumTmp, std::string &&str) { return E##MapName[static_cast<T>(enumTmp)] + str; } \
    std::string &operator+=(std::string &str, E enumTmp)                                                      \
    {                                                                                                         \
        str += E##MapName[static_cast<T>(enumTmp)];                                                           \
        return str;                                                                                           \
    }                                                                                                         \
    E operator++(E &enumTmp)                                                                                  \
    {                                                                                                         \
        auto iter = E##MapName.find(static_cast<T>(enumTmp));                                                 \
        if (iter == E##MapName.end() || std::next(iter) == E##MapName.end())                                  \
            iter = E##MapName.begin();                                                                        \
        else                                                                                                  \
        {                                                                                                     \
            ++iter;                                                                                           \
        }                                                                                                     \
        enumTmp = static_cast<E>(iter->first);                                                                \
        return enumTmp;                                                                                       \
    }                                                                                                         \
    bool valid##E(T value) { return (E##MapName.find(value) != E##MapName.end()); }

#define DECLARE_ENUM(E, ...) DECLARE_ENUM_WITH_TYPE(E, int32_t, __VA_ARGS__)
template <typename T>
std::map<T, std::string> generateEnumMap(std::string strMap)
{
    STRING_REMOVE_CHAR(strMap, ' ');
    STRING_REMOVE_CHAR(strMap, '(');

    std::vector<std::string> enumTokens(splitString(strMap));
    std::map<T, std::string> retMap;
    T inxMap;

    inxMap = 0;
    for (auto iter = enumTokens.begin(); iter != enumTokens.end(); ++iter)
    {
        // Token: [EnumName | EnumName=EnumValue]
        std::string enumName;
        T enumValue;
        if (iter->find('=') == std::string::npos)
        {
            enumName = *iter;
        }
        else
        {
            std::vector<std::string> enumNameValue(splitString(*iter, '='));
            enumName = enumNameValue[0];
            //inxMap = static_cast<T>(enumNameValue[1]);
            if (std::is_unsigned<T>::value)
            {
                inxMap = static_cast<T>(std::stoull(enumNameValue[1], 0, 0));
            }
            else
            {
                inxMap = static_cast<T>(std::stoll(enumNameValue[1], 0, 0));
            }
        }
        retMap[inxMap++] = enumName;
    }

    return retMap;
}

Пример:

DECLARE_ENUM_WITH_TYPE(TestEnumClass, int32_t, ZERO = 0x00, TWO = 0x02, ONE = 0x01, THREE = 0x03, FOUR);

int main(void) {
    TestEnumClass first, second;
    first = TestEnumClass::FOUR;
    second = TestEnumClass::TWO;

    std::cout << first << "(" << static_cast<uint32_t>(first) << ")" << std::endl; // FOUR(4)

    std::string strOne;
    strOne = ~first;
    std::cout << strOne << std::endl; // FOUR

    std::string strTwo;
    strTwo = ("Enum-" + second) + (TestEnumClass::THREE + "-test");
    std::cout << strTwo << std::endl; // Enum-TWOTHREE-test

    std::string strThree("TestEnumClass: ");
    strThree += second;
    std::cout << strThree << std::endl; // TestEnumClass: TWO
    std::cout << "Enum count=" << *first << std::endl;
}

Вы можете запустить код здесь

Мой ответ здесь.

Используя эту библиотеку (сделанную мной), вы можете получить имена констант enum: https://github.com/Neargye/nameof

// Name of enum
auto c = Color::RED;
NAMEOF_ENUM(c) -> "RED"
// Name of enum
nameof::nameof_enum(c) -> "RED"

constexpr auto cx_name = NAMEOF_ENUM(c);
static_assert("RED" == cx_name);

Эта библиотека использует хак для конкретного компилятора (основанный на __PRETTY_FUNCTION__ / __FUNCSIG__), который работает на Clang >= 5, MSVC >= 15,3 и GCC >= 9.

(Подход библиотеки better_enums)

В текущем C++ есть способ сделать enum to string следующим образом:

ENUM(Channel, char, Red = 1, Green, Blue)

// "Same as":
// enum class Channel : char { Red = 1, Green, Blue };

Использование:

Channel     c = Channel::_from_string("Green");  // Channel::Green (2)
c._to_string();                                  // string "Green"

for (Channel c : Channel::_values())
    std::cout << c << std::endl;

// And so on...

Все операции могут быть сделаны constexpr, Вы также можете реализовать рефлексию C++17, упомянутую в ответе @ecatmur.

  • Есть только один макрос. Я считаю, что это минимально возможный, потому что препроцессор (Stringization) #) - единственный способ преобразовать токен в строку в текущем C++.
  • Макрос довольно ненавязчив - объявления констант, включая инициализаторы, вставляются во встроенное объявление enum. Это означает, что они имеют тот же синтаксис и значение, что и во встроенном перечислении.
  • Повторение устранено.
  • Реализация является наиболее естественной и полезной как минимум в C++11, из-за constexpr, Его также можно заставить работать с C++98 + __VA_ARGS__, Это определенно современный C++.

Определение макроса несколько связано, поэтому я отвечаю на это несколькими способами.

  • Большая часть этого ответа - реализация, которая, я думаю, подходит для ограничения пространства в Stackru.
  • Существует также статья CodeProject, описывающая основы реализации в подробном руководстве. [ Должен ли я переместить его сюда? Я думаю, что это слишком много для SO ответа.
  • Существует полнофункциональная библиотека "Better Enums", которая реализует макрос в одном заголовочном файле. Он также реализует N4428 Query Property Queries, текущую версию предложения по отражению C++17 N4113. Таким образом, по крайней мере для перечислений, объявленных с помощью этого макроса, вы можете получить предлагаемое отражение перечисления C++17 сейчас, в C++11/C++14.

Расширить этот ответ до функций библиотеки несложно - здесь не осталось ничего "важного". Это, однако, довольно утомительно, и есть проблемы переносимости компилятора.

Отказ от ответственности: я являюсь автором как статьи CodeProject, так и библиотеки.

Вы можете попробовать код из этого ответа, библиотеку и реализацию N4428 онлайн в Wandbox. Документация библиотеки также содержит обзор того, как использовать его как N4428, что объясняет перечислимую часть этого предложения.


объяснение

Код ниже реализует преобразования между перечислениями и строками. Однако его можно расширить и на другие вещи, такие как итерация. Этот ответ оборачивает перечисление в struct, Вы также можете генерировать черты struct вместо перечисления.

Стратегия заключается в том, чтобы создать что-то вроде этого:

struct Channel {
    enum _enum : char { __VA_ARGS__ };
    constexpr static const Channel          _values[] = { __VA_ARGS__ };
    constexpr static const char * const     _names[] = { #__VA_ARGS__ };

    static const char* _to_string(Channel v) { /* easy */ }
    constexpr static Channel _from_string(const char *s) { /* easy */ }
};

Проблемы:

  1. Мы закончим с чем-то вроде {Red = 1, Green, Blue} как инициализатор для массива значений. Это не допустимый C++, потому что Red не присваиваемое выражение Это решается путем приведения каждой константы к типу T который имеет оператор присваивания, но отбросит присваивание: {(T)Red = 1, (T)Green, (T)Blue},
  2. Точно так же мы закончим с {"Red = 1", "Green", "Blue"} как инициализатор для массива имен. Нам нужно будет обрезать " = 1", Я не знаю отличный способ сделать это во время компиляции, поэтому мы отложим это до времени выполнения. В следствии, _to_string не будет constexpr, но _from_string все еще может быть constexpr потому что мы можем рассматривать пробелы и знаки равенства как терминаторы при сравнении с необрезанными строками.
  3. Оба вышеперечисленных нуждаются в макросе "сопоставления", который может применять другой макрос к каждому элементу в __VA_ARGS__, Это довольно стандартно. Этот ответ включает в себя простую версию, которая может обрабатывать до 8 элементов.
  4. Если макрос должен быть действительно автономным, ему не нужно объявлять статические данные, для которых требуется отдельное определение. На практике это означает, что массивы нуждаются в специальной обработке. Есть два возможных решения: constexpr (или просто const) массивы в области имен или обычные массивы в constexpr статические встроенные функции. Код в этом ответе предназначен для C++ 11 и использует прежний подход. Статья CodeProject предназначена для C++ 98 и принимает последнее.

Код

#include <cstddef>      // For size_t.
#include <cstring>      // For strcspn, strncpy.
#include <stdexcept>    // For runtime_error.



// A "typical" mapping macro. MAP(macro, a, b, c, ...) expands to
// macro(a) macro(b) macro(c) ...
// The helper macro COUNT(a, b, c, ...) expands to the number of
// arguments, and IDENTITY(x) is needed to control the order of
// expansion of __VA_ARGS__ on Visual C++ compilers.
#define MAP(macro, ...) \
    IDENTITY( \
        APPLY(CHOOSE_MAP_START, COUNT(__VA_ARGS__)) \
            (macro, __VA_ARGS__))

#define CHOOSE_MAP_START(count) MAP ## count

#define APPLY(macro, ...) IDENTITY(macro(__VA_ARGS__))

#define IDENTITY(x) x

#define MAP1(m, x)      m(x)
#define MAP2(m, x, ...) m(x) IDENTITY(MAP1(m, __VA_ARGS__))
#define MAP3(m, x, ...) m(x) IDENTITY(MAP2(m, __VA_ARGS__))
#define MAP4(m, x, ...) m(x) IDENTITY(MAP3(m, __VA_ARGS__))
#define MAP5(m, x, ...) m(x) IDENTITY(MAP4(m, __VA_ARGS__))
#define MAP6(m, x, ...) m(x) IDENTITY(MAP5(m, __VA_ARGS__))
#define MAP7(m, x, ...) m(x) IDENTITY(MAP6(m, __VA_ARGS__))
#define MAP8(m, x, ...) m(x) IDENTITY(MAP7(m, __VA_ARGS__))

#define EVALUATE_COUNT(_1, _2, _3, _4, _5, _6, _7, _8, count, ...) \
    count

#define COUNT(...) \
    IDENTITY(EVALUATE_COUNT(__VA_ARGS__, 8, 7, 6, 5, 4, 3, 2, 1))



// The type "T" mentioned above that drops assignment operations.
template <typename U>
struct ignore_assign {
    constexpr explicit ignore_assign(U value) : _value(value) { }
    constexpr operator U() const { return _value; }

    constexpr const ignore_assign& operator =(int dummy) const
        { return *this; }

    U   _value;
};



// Prepends "(ignore_assign<_underlying>)" to each argument.
#define IGNORE_ASSIGN_SINGLE(e) (ignore_assign<_underlying>)e,
#define IGNORE_ASSIGN(...) \
    IDENTITY(MAP(IGNORE_ASSIGN_SINGLE, __VA_ARGS__))

// Stringizes each argument.
#define STRINGIZE_SINGLE(e) #e,
#define STRINGIZE(...) IDENTITY(MAP(STRINGIZE_SINGLE, __VA_ARGS__))



// Some helpers needed for _from_string.
constexpr const char    terminators[] = " =\t\r\n";

// The size of terminators includes the implicit '\0'.
constexpr bool is_terminator(char c, size_t index = 0)
{
    return
        index >= sizeof(terminators) ? false :
        c == terminators[index] ? true :
        is_terminator(c, index + 1);
}

constexpr bool matches_untrimmed(const char *untrimmed, const char *s,
                                 size_t index = 0)
{
    return
        is_terminator(untrimmed[index]) ? s[index] == '\0' :
        s[index] != untrimmed[index] ? false :
        matches_untrimmed(untrimmed, s, index + 1);
}



// The macro proper.
//
// There are several "simplifications" in this implementation, for the
// sake of brevity. First, we have only one viable option for declaring
// constexpr arrays: at namespace scope. This probably should be done
// two namespaces deep: one namespace that is likely to be unique for
// our little enum "library", then inside it a namespace whose name is
// based on the name of the enum to avoid collisions with other enums.
// I am using only one level of nesting.
//
// Declaring constexpr arrays inside the struct is not viable because
// they will need out-of-line definitions, which will result in
// duplicate symbols when linking. This can be solved with weak
// symbols, but that is compiler- and system-specific. It is not
// possible to declare constexpr arrays as static variables in
// constexpr functions due to the restrictions on such functions.
//
// Note that this prevents the use of this macro anywhere except at
// namespace scope. Ironically, the C++98 version of this, which can
// declare static arrays inside static member functions, is actually
// more flexible in this regard. It is shown in the CodeProject
// article.
//
// Second, for compilation performance reasons, it is best to separate
// the macro into a "parametric" portion, and the portion that depends
// on knowing __VA_ARGS__, and factor the former out into a template.
//
// Third, this code uses a default parameter in _from_string that may
// be better not exposed in the public interface.

#define ENUM(EnumName, Underlying, ...)                               \
namespace data_ ## EnumName {                                         \
    using _underlying = Underlying;                                   \
    enum { __VA_ARGS__ };                                             \
                                                                      \
    constexpr const size_t           _size =                          \
        IDENTITY(COUNT(__VA_ARGS__));                                 \
                                                                      \
    constexpr const _underlying      _values[] =                      \
        { IDENTITY(IGNORE_ASSIGN(__VA_ARGS__)) };                     \
                                                                      \
    constexpr const char * const     _raw_names[] =                   \
        { IDENTITY(STRINGIZE(__VA_ARGS__)) };                         \
}                                                                     \
                                                                      \
struct EnumName {                                                     \
    using _underlying = Underlying;                                   \
    enum _enum : _underlying { __VA_ARGS__ };                         \
                                                                      \
    const char * _to_string() const                                   \
    {                                                                 \
        for (size_t index = 0; index < data_ ## EnumName::_size;      \
             ++index) {                                               \
                                                                      \
            if (data_ ## EnumName::_values[index] == _value)          \
                return _trimmed_names()[index];                       \
        }                                                             \
                                                                      \
        throw std::runtime_error("invalid value");                    \
    }                                                                 \
                                                                      \
    constexpr static EnumName _from_string(const char *s,             \
                                           size_t index = 0)          \
    {                                                                 \
        return                                                        \
            index >= data_ ## EnumName::_size ?                       \
                    throw std::runtime_error("invalid identifier") :  \
            matches_untrimmed(                                        \
                data_ ## EnumName::_raw_names[index], s) ?            \
                    (EnumName)(_enum)data_ ## EnumName::_values[      \
                                                            index] :  \
            _from_string(s, index + 1);                               \
    }                                                                 \
                                                                      \
    EnumName() = delete;                                              \
    constexpr EnumName(_enum value) : _value(value) { }               \
    constexpr operator _enum() const { return (_enum)_value; }        \
                                                                      \
  private:                                                            \
    _underlying     _value;                                           \
                                                                      \
    static const char * const * _trimmed_names()                      \
    {                                                                 \
        static char     *the_names[data_ ## EnumName::_size];         \
        static bool     initialized = false;                          \
                                                                      \
        if (!initialized) {                                           \
            for (size_t index = 0; index < data_ ## EnumName::_size;  \
                 ++index) {                                           \
                                                                      \
                size_t  length =                                      \
                    std::strcspn(data_ ## EnumName::_raw_names[index],\
                                 terminators);                        \
                                                                      \
                the_names[index] = new char[length + 1];              \
                                                                      \
                std::strncpy(the_names[index],                        \
                             data_ ## EnumName::_raw_names[index],    \
                             length);                                 \
                the_names[index][length] = '\0';                      \
            }                                                         \
                                                                      \
            initialized = true;                                       \
        }                                                             \
                                                                      \
        return the_names;                                             \
    }                                                                 \
};

а также

// The code above was a "header file". This is a program that uses it.
#include <iostream>
#include "the_file_above.h"

ENUM(Channel, char, Red = 1, Green, Blue)

constexpr Channel   channel = Channel::_from_string("Red");

int main()
{
    std::cout << channel._to_string() << std::endl;

    switch (channel) {
        case Channel::Red:   return 0;
        case Channel::Green: return 1;
        case Channel::Blue:  return 2;
    }
}

static_assert(sizeof(Channel) == sizeof(char), "");

Программа выше печатает Red, как и следовало ожидать. Существует определенная степень безопасности типов, поскольку вы не можете создать перечисление, не инициализировав его и не удалив одно из дел из switch приведет к предупреждению от компилятора (в зависимости от вашего компилятора и флагов). Также обратите внимание, что "Red" был преобразован в перечисление во время компиляции.

Для C++ 17 C++ 20 вам будет интересна работа Исследовательской группы по рефлексии (ИК7). Существует параллельная серия статей, охватывающих формулировку ( P0194) и обоснование, дизайн и эволюцию ( P0385). (Ссылки на последние статьи в каждой серии.)

Начиная с P0194r2 (2016-10-15), синтаксис будет использовать предложенный reflexpr ключевое слово:

meta::get_base_name_v<
  meta::get_element_m<
    meta::get_enumerators_m<reflexpr(MyEnum)>,
    0>
  >

Например (адаптировано из reflexpr из ветви Matus Choclik):

#include <reflexpr>
#include <iostream>

enum MyEnum { AAA = 1, BBB, CCC = 99 };

int main()
{
  auto name_of_MyEnum_0 = 
    std::meta::get_base_name_v<
      std::meta::get_element_m<
        std::meta::get_enumerators_m<reflexpr(MyEnum)>,
        0>
    >;

  // prints "AAA"
  std::cout << name_of_MyEnum_0 << std::endl;
}

Статическое отражение не смогло войти в C++17 (скорее, в окончательный вариант, представленный на совещании по стандартам в ноябре 2016 года в Иссакуа), но есть уверенность, что оно войдет в C++20; из отчета Херба Саттера:

В частности, исследовательская группа Reflection рассмотрела последнее объединенное предложение статического отражения и обнаружила, что готова войти в основные группы Evolution на нашем следующем собрании, чтобы приступить к рассмотрению унифицированного предложения статического отражения для TS или для следующего стандарта.

Еще в 2011 году я провел выходные, настраивая решение на основе макросов, и в итоге никогда не использовал его.

Моя текущая процедура - запустить Vim, скопировать перечислители в пустое тело переключателя, запустить новый макрос, преобразовать первый перечислитель в оператор case, переместить курсор в начало следующей строки, остановить макрос и сгенерировать оставшийся регистр операторы, запустив макрос на других перечислителях.

Макросы Vim более интересны, чем макросы C++.

Пример из жизни:

enum class EtherType : uint16_t
{
    ARP   = 0x0806,
    IPv4  = 0x0800,
    VLAN  = 0x8100,
    IPv6  = 0x86DD
};

Я создам это:

std::ostream& operator<< (std::ostream& os, EtherType ethertype)
{
    switch (ethertype)
    {
        case EtherType::ARP : return os << "ARP" ;
        case EtherType::IPv4: return os << "IPv4";
        case EtherType::VLAN: return os << "VLAN";
        case EtherType::IPv6: return os << "IPv6";
        // omit default case to trigger compiler warning for missing cases
    };
    return os << static_cast<std::uint16_t>(ethertype);
}

И вот как я обхожусь.

Тем не менее, встроенная поддержка перечисления enum была бы намного лучше. Мне очень интересно увидеть результаты рабочей группы по отражению в C++17.

Альтернативный способ сделать это был опубликован @sehe в комментариях.

Я не знаю, понравится ли вам это или нет, я не очень доволен этим решением, но это дружественный подход C++14, потому что он использует переменные шаблона и злоупотребляет специализацией шаблона:

enum class MyEnum : std::uint_fast8_t {
   AAA,
   BBB,
   CCC,
};

template<MyEnum> const char MyEnumName[] = "Invalid MyEnum value";
template<> const char MyEnumName<MyEnum::AAA>[] = "AAA";
template<> const char MyEnumName<MyEnum::BBB>[] = "BBB";
template<> const char MyEnumName<MyEnum::CCC>[] = "CCC";

int main()
{
    // Prints "AAA"
    std::cout << MyEnumName<MyEnum::AAA> << '\n';
    // Prints "Invalid MyEnum value"
    std::cout << MyEnumName<static_cast<MyEnum>(0x12345678)> << '\n';
    // Well... in fact it prints "Invalid MyEnum value" for any value
    // different of MyEnum::AAA, MyEnum::BBB or MyEnum::CCC.

    return 0;
}

Самое худшее в этом подходе - это боль, которую нужно поддерживать, но это также боль - поддерживать некоторые другие подобные подходы, не так ли?

Хорошие моменты об этом подходе:

  • Использование переменных шаблонов (функция C++14)
  • С помощью специализации шаблонов мы можем "обнаружить", когда используется недопустимое значение (но я не уверен, что это может быть полезно вообще).
  • Это выглядит аккуратно.
  • Поиск имени выполняется во время компиляции.

Живой пример

редактировать

user673679, ты прав; подход с использованием шаблонов переменных C++14 не обрабатывает случай выполнения, я был забыл об этом:(

Но мы все еще можем использовать некоторые современные функции C++ и шаблон переменных, а также хитрость с переменными шаблонами, чтобы добиться перевода во время выполнения из перечисляемого значения в строку... это так же утомительно, как и другие, но все же стоит упомянуть.

Давайте начнем использовать псевдоним шаблона для сокращения доступа к карте перечисления в строку:

// enum_map contains pairs of enum value and value string for each enum
// this shortcut allows us to use enum_map<whatever>.
template <typename ENUM>
using enum_map = std::map<ENUM, const std::string>;

// This variable template will create a map for each enum type which is
// instantiated with.
template <typename ENUM>
enum_map<ENUM> enum_values{};

Затем вариационный шаблон обманывает:

template <typename ENUM>
void initialize() {}

template <typename ENUM, typename ... args>
void initialize(const ENUM value, const char *name, args ... tail)
{
    enum_values<ENUM>.emplace(value, name);
    initialize<ENUM>(tail ...);
}

"Лучший трюк" здесь - использование шаблона переменной для карты, которая содержит значения и имена каждой записи enum; эта карта будет одинаковой в каждой единице перевода и будет иметь одно и то же имя везде, поэтому она довольно проста и аккуратна, если мы назовем initialize функционировать так:

initialize
(
    MyEnum::AAA, "AAA",
    MyEnum::BBB, "BBB",
    MyEnum::CCC, "CCC"
);

Мы присваиваем имена каждому MyEnum запись и может использоваться во время выполнения:

std::cout << enum_values<MyEnum>[MyEnum::AAA] << '\n';

Но можно улучшить с помощью SFINAE и перегрузки << оператор:

template<typename ENUM, class = typename std::enable_if<std::is_enum<ENUM>::value>::type>
std::ostream &operator <<(std::ostream &o, const ENUM value)
{
    static const std::string Unknown{std::string{typeid(ENUM).name()} + " unknown value"};
    auto found = enum_values<ENUM>.find(value);

    return o << (found == enum_values<ENUM>.end() ? Unknown : found->second);
}

С правильным operator << теперь мы можем использовать перечисление следующим образом:

std::cout << MyEnum::AAA << '\n';

Это также утомительно для поддержания и может быть улучшено, но надеюсь, что вы поняли идею.

Живой пример

Если твой enum похоже

enum MyEnum
{
  AAA = -8,
  BBB = '8',
  CCC = AAA + BBB
};

Вы можете перемещать содержимое enum в новый файл:

AAA = -8,
BBB = '8',
CCC = AAA + BBB

И тогда значения могут быть окружены макросом:

// default definition
#ifned ITEM(X,Y)
#define ITEM(X,Y)
#endif

// Items list
ITEM(AAA,-8)
ITEM(BBB,'8')
ITEM(CCC,AAA+BBB)

// clean up
#undef ITEM

Следующим шагом может быть включение элементов в enum снова:

enum MyEnum
{
  #define ITEM(X,Y) X=Y,
  #include "enum_definition_file"
};

И, наконец, вы можете генерировать служебные функции об этом enum:

std::string ToString(MyEnum value)
{
  switch( value )
  {
    #define ITEM(X,Y) case X: return #X;
    #include "enum_definition_file"
  }

  return "";
}

MyEnum FromString(std::string const& value)
{
  static std::map<std::string,MyEnum> converter
  {
    #define ITEM(X,Y) { #X, X },
    #include "enum_definition_file"
  };

  auto it = converter.find(value);
  if( it != converter.end() )
    return it->second;
  else
    throw std::runtime_error("Value is missing");
}

Решение может быть применено к старым стандартам C++ и не использует современные элементы C++, но оно может использоваться для генерации большого количества кода без особых усилий и обслуживания.

У меня была такая же проблема пару дней назад. Я не смог найти ни одного решения C++ без какой-то странной макро-магии, поэтому я решил написать генератор кода CMake для генерации простых операторов регистра.

Использование:

enum2str_generate(
  PATH          <path to place the files in>
  CLASS_NAME    <name of the class (also prefix for the files)>
  FUNC_NAME     <name of the (static) member function>
  NAMESPACE     <the class will be inside this namespace>
  INCLUDES      <LIST of files where the enums are defined>
  ENUMS         <LIST of enums to process>
  BLACKLIST     <LIST of constants to ignore>
  USE_CONSTEXPR <whether to use constexpr or not (default: off)>
  USE_C_STRINGS <whether to use c strings instead of std::string or not (default: off)>
)

Функция ищет включаемые файлы в файловой системе (использует каталоги включения, предоставляемые командой include_directories), считывает их и выполняет некоторые регулярные выражения, чтобы сгенерировать класс и функцию (и).

ПРИМЕЧАНИЕ: constexpr подразумевает встроенный в C++, поэтому использование опции USE_CONSTEXPR создаст класс только заголовок!

Пример:

./includes/ah:

enum AAA : char { A1, A2 };

typedef enum {
   VAL1          = 0,
   VAL2          = 1,
   VAL3          = 2,
   VAL_FIRST     = VAL1,    // Ignored
   VAL_LAST      = VAL3,    // Ignored
   VAL_DUPLICATE = 1,       // Ignored
   VAL_STRANGE   = VAL2 + 1 // Must be blacklisted
} BBB;

./CMakeLists.txt:

include_directories( ${PROJECT_SOURCE_DIR}/includes ...)

enum2str_generate(
   PATH       "${PROJECT_SOURCE_DIR}"
   CLASS_NAME "enum2Str"
   NAMESPACE  "abc"
   FUNC_NAME  "toStr"
   INCLUDES   "a.h" # WITHOUT directory
   ENUMS      "AAA" "BBB"
   BLACKLIST  "VAL_STRANGE")

Формирует:

./enum2Str.hpp:

/*!
  * \file enum2Str.hpp
  * \warning This is an automatically generated file!
  */

#ifndef ENUM2STR_HPP
#define ENUM2STR_HPP

#include <string>
#include <a.h>

namespace abc {

class enum2Str {
 public:
   static std::string toStr( AAA _var ) noexcept;
   static std::string toStr( BBB _var ) noexcept;
};

}

#endif // ENUM2STR_HPP

./enum2Str.cpp:

/*!
  * \file enum2Str.cpp
  * \warning This is an automatically generated file!
  */

#include "enum2Str.hpp"

namespace abc {

/*!
 * \brief Converts the enum AAA to a std::string
 * \param _var The enum value to convert
 * \returns _var converted to a std::string
 */
std::string enum2Str::toStr( AAA _var ) noexcept {
   switch ( _var ) {
      case A1: return "A1";
      case A2: return "A2";
      default: return "<UNKNOWN>";
   }
}

/*!
 * \brief Converts the enum BBB to a std::string
 * \param _var The enum value to convert
 * \returns _var converted to a std::string
 */
std::string enum2Str::toStr( BBB _var ) noexcept {
   switch ( _var ) {
      case VAL1: return "VAL1";
      case VAL2: return "VAL2";
      case VAL3: return "VAL3";
      default: return "<UNKNOWN>";
   }
}
}

Обновить:

Теперь сценарий также поддерживает перечисления в пределах области (enum class|struct), и я переместил его в отдельное хранилище с некоторыми другими часто используемыми сценариями: https://github.com/mensinda/cmakeBuildTools

В соответствии с запросом от OP, здесь урезанная версия уродливого решения для макросов, основанного на Boost Preprosessor и Variadic Macros.

Он допускает простой список, такой как синтаксис элементов перечислителя, наряду с установкой значений для определенных элементов, чтобы

XXX_ENUM(foo,(a,b,(c,42)));

расширяется до

enum foo {
    a,
    b,
    c=42
};

Наряду с необходимыми функциями для вывода и сделать некоторые преобразования обратно. Этот макрос был здесь уже целую вечность, и я не совсем уверен, что это самый эффективный способ или что он соответствует требованиям, но с тех пор он работал

Полный код можно увидеть в действии как в Ideone, так и в Coliru.

Его гигантское безобразие выше; Я бы поставил его под спойлеры, чтобы защитить твои глаза, если бы знал, но я уценка не нравится.

Библиотека (объединена в одном заголовочном файле)

#include <boost/preprocessor.hpp>
#include <string>
#include <unordered_map>

namespace xxx
{

template<class T>
struct enum_cast_adl_helper { };

template<class E>
E enum_cast( const std::string& s )
{
    return do_enum_cast(s,enum_cast_adl_helper<E>());
}

template<class E>
E enum_cast( const char* cs )
{
    std::string s(cs);
    return enum_cast<E>(s);
}

} // namespace xxx

#define XXX_PP_ARG_N(                             \
          _1, _2, _3, _4, _5, _6, _7, _8, _9,_10, \
         _11,_12,_13,_14,_15,_16,_17,_18,_19,_20, \
         _21,_22,_23,_24,_25,_26,_27,_28,_29,_30, \
         _31,_32,_33,_34,_35,_36,_37,_38,_39,_40, \
         _41,_42,_43,_44,_45,_46,_47,_48,_49,_50, \
         _51,_52,_53,_54,_55,_56,_57,_58,_59,_60, \
         _61,_62,_63,N,...) N

#define XXX_PP_RSEQ_N()                 \
         63,62,61,60,                   \
         59,58,57,56,55,54,53,52,51,50, \
         49,48,47,46,45,44,43,42,41,40, \
         39,38,37,36,35,34,33,32,31,30, \
         29,28,27,26,25,24,23,22,21,20, \
         19,18,17,16,15,14,13,12,11,10, \
         9,8,7,6,5,4,3,2,1,0 

#define XXX_PP_NARG_(...) XXX_PP_ARG_N(__VA_ARGS__)
#define XXX_PP_NARG(...)  XXX_PP_NARG_(__VA_ARGS__,XXX_PP_RSEQ_N())
#define XXX_TUPLE_SIZE_INTERNAL(TUPLE) XXX_PP_NARG TUPLE

#define XXX_TUPLE_CHOICE(i)                            \
  BOOST_PP_APPLY(                                      \
    BOOST_PP_TUPLE_ELEM(                               \
      25, i, (                                         \
        (0), (1), (2), (3), (4), (5), (6), (7), (8),   \
        (9), (10), (11), (12), (13), (14), (15), (16), \
        (17), (18), (19), (20), (21), (22), (23), (24) \
  ) ) )

#define BOOST_PP_BOOL_00  BOOST_PP_BOOL_0
#define BOOST_PP_BOOL_01  BOOST_PP_BOOL_1
#define BOOST_PP_BOOL_02  BOOST_PP_BOOL_2
#define BOOST_PP_BOOL_03  BOOST_PP_BOOL_3
#define BOOST_PP_BOOL_04  BOOST_PP_BOOL_4
#define BOOST_PP_BOOL_05  BOOST_PP_BOOL_5
#define BOOST_PP_BOOL_06  BOOST_PP_BOOL_6
#define BOOST_PP_BOOL_07  BOOST_PP_BOOL_7
#define BOOST_PP_BOOL_08  BOOST_PP_BOOL_8
#define BOOST_PP_BOOL_09  BOOST_PP_BOOL_9
#define BOOST_PP_BOOL_010 BOOST_PP_BOOL_10
#define BOOST_PP_BOOL_011 BOOST_PP_BOOL_11
#define BOOST_PP_BOOL_012 BOOST_PP_BOOL_12
#define BOOST_PP_BOOL_013 BOOST_PP_BOOL_13
#define BOOST_PP_BOOL_014 BOOST_PP_BOOL_14
#define BOOST_PP_BOOL_015 BOOST_PP_BOOL_15
#define BOOST_PP_BOOL_016 BOOST_PP_BOOL_16
#define BOOST_PP_BOOL_017 BOOST_PP_BOOL_17
#define BOOST_PP_BOOL_018 BOOST_PP_BOOL_18
#define BOOST_PP_BOOL_019 BOOST_PP_BOOL_19
#define BOOST_PP_BOOL_020 BOOST_PP_BOOL_20
#define BOOST_PP_BOOL_021 BOOST_PP_BOOL_21
#define BOOST_PP_BOOL_022 BOOST_PP_BOOL_22
#define BOOST_PP_BOOL_023 BOOST_PP_BOOL_23
#define BOOST_PP_BOOL_024 BOOST_PP_BOOL_24
#define BOOST_PP_BOOL_025 BOOST_PP_BOOL_25
#define BOOST_PP_BOOL_026 BOOST_PP_BOOL_26
#define BOOST_PP_BOOL_027 BOOST_PP_BOOL_27
#define BOOST_PP_BOOL_028 BOOST_PP_BOOL_28
#define BOOST_PP_BOOL_029 BOOST_PP_BOOL_29
#define BOOST_PP_BOOL_030 BOOST_PP_BOOL_30
#define BOOST_PP_BOOL_031 BOOST_PP_BOOL_31
#define BOOST_PP_BOOL_032 BOOST_PP_BOOL_32
#define BOOST_PP_BOOL_033 BOOST_PP_BOOL_33
#define BOOST_PP_BOOL_034 BOOST_PP_BOOL_34
#define BOOST_PP_BOOL_035 BOOST_PP_BOOL_35
#define BOOST_PP_BOOL_036 BOOST_PP_BOOL_36
#define BOOST_PP_BOOL_037 BOOST_PP_BOOL_37
#define BOOST_PP_BOOL_038 BOOST_PP_BOOL_38
#define BOOST_PP_BOOL_039 BOOST_PP_BOOL_39
#define BOOST_PP_BOOL_040 BOOST_PP_BOOL_40
#define BOOST_PP_BOOL_041 BOOST_PP_BOOL_41
#define BOOST_PP_BOOL_042 BOOST_PP_BOOL_42
#define BOOST_PP_BOOL_043 BOOST_PP_BOOL_43
#define BOOST_PP_BOOL_044 BOOST_PP_BOOL_44
#define BOOST_PP_BOOL_045 BOOST_PP_BOOL_45
#define BOOST_PP_BOOL_046 BOOST_PP_BOOL_46
#define BOOST_PP_BOOL_047 BOOST_PP_BOOL_47
#define BOOST_PP_BOOL_048 BOOST_PP_BOOL_48
#define BOOST_PP_BOOL_049 BOOST_PP_BOOL_49
#define BOOST_PP_BOOL_050 BOOST_PP_BOOL_50
#define BOOST_PP_BOOL_051 BOOST_PP_BOOL_51
#define BOOST_PP_BOOL_052 BOOST_PP_BOOL_52
#define BOOST_PP_BOOL_053 BOOST_PP_BOOL_53
#define BOOST_PP_BOOL_054 BOOST_PP_BOOL_54
#define BOOST_PP_BOOL_055 BOOST_PP_BOOL_55
#define BOOST_PP_BOOL_056 BOOST_PP_BOOL_56
#define BOOST_PP_BOOL_057 BOOST_PP_BOOL_57
#define BOOST_PP_BOOL_058 BOOST_PP_BOOL_58
#define BOOST_PP_BOOL_059 BOOST_PP_BOOL_59
#define BOOST_PP_BOOL_060 BOOST_PP_BOOL_60
#define BOOST_PP_BOOL_061 BOOST_PP_BOOL_61
#define BOOST_PP_BOOL_062 BOOST_PP_BOOL_62
#define BOOST_PP_BOOL_063 BOOST_PP_BOOL_63

#define BOOST_PP_DEC_00  BOOST_PP_DEC_0
#define BOOST_PP_DEC_01  BOOST_PP_DEC_1
#define BOOST_PP_DEC_02  BOOST_PP_DEC_2
#define BOOST_PP_DEC_03  BOOST_PP_DEC_3
#define BOOST_PP_DEC_04  BOOST_PP_DEC_4
#define BOOST_PP_DEC_05  BOOST_PP_DEC_5
#define BOOST_PP_DEC_06  BOOST_PP_DEC_6
#define BOOST_PP_DEC_07  BOOST_PP_DEC_7
#define BOOST_PP_DEC_08  BOOST_PP_DEC_8
#define BOOST_PP_DEC_09  BOOST_PP_DEC_9
#define BOOST_PP_DEC_010 BOOST_PP_DEC_10
#define BOOST_PP_DEC_011 BOOST_PP_DEC_11
#define BOOST_PP_DEC_012 BOOST_PP_DEC_12
#define BOOST_PP_DEC_013 BOOST_PP_DEC_13
#define BOOST_PP_DEC_014 BOOST_PP_DEC_14
#define BOOST_PP_DEC_015 BOOST_PP_DEC_15
#define BOOST_PP_DEC_016 BOOST_PP_DEC_16
#define BOOST_PP_DEC_017 BOOST_PP_DEC_17
#define BOOST_PP_DEC_018 BOOST_PP_DEC_18
#define BOOST_PP_DEC_019 BOOST_PP_DEC_19
#define BOOST_PP_DEC_020 BOOST_PP_DEC_20
#define BOOST_PP_DEC_021 BOOST_PP_DEC_21
#define BOOST_PP_DEC_022 BOOST_PP_DEC_22
#define BOOST_PP_DEC_023 BOOST_PP_DEC_23
#define BOOST_PP_DEC_024 BOOST_PP_DEC_24
#define BOOST_PP_DEC_025 BOOST_PP_DEC_25
#define BOOST_PP_DEC_026 BOOST_PP_DEC_26
#define BOOST_PP_DEC_027 BOOST_PP_DEC_27
#define BOOST_PP_DEC_028 BOOST_PP_DEC_28
#define BOOST_PP_DEC_029 BOOST_PP_DEC_29
#define BOOST_PP_DEC_030 BOOST_PP_DEC_30
#define BOOST_PP_DEC_031 BOOST_PP_DEC_31
#define BOOST_PP_DEC_032 BOOST_PP_DEC_32
#define BOOST_PP_DEC_033 BOOST_PP_DEC_33
#define BOOST_PP_DEC_034 BOOST_PP_DEC_34
#define BOOST_PP_DEC_035 BOOST_PP_DEC_35
#define BOOST_PP_DEC_036 BOOST_PP_DEC_36
#define BOOST_PP_DEC_037 BOOST_PP_DEC_37
#define BOOST_PP_DEC_038 BOOST_PP_DEC_38
#define BOOST_PP_DEC_039 BOOST_PP_DEC_39
#define BOOST_PP_DEC_040 BOOST_PP_DEC_40
#define BOOST_PP_DEC_041 BOOST_PP_DEC_41
#define BOOST_PP_DEC_042 BOOST_PP_DEC_42
#define BOOST_PP_DEC_043 BOOST_PP_DEC_43
#define BOOST_PP_DEC_044 BOOST_PP_DEC_44
#define BOOST_PP_DEC_045 BOOST_PP_DEC_45
#define BOOST_PP_DEC_046 BOOST_PP_DEC_46
#define BOOST_PP_DEC_047 BOOST_PP_DEC_47
#define BOOST_PP_DEC_048 BOOST_PP_DEC_48
#define BOOST_PP_DEC_049 BOOST_PP_DEC_49
#define BOOST_PP_DEC_050 BOOST_PP_DEC_50
#define BOOST_PP_DEC_051 BOOST_PP_DEC_51
#define BOOST_PP_DEC_052 BOOST_PP_DEC_52
#define BOOST_PP_DEC_053 BOOST_PP_DEC_53
#define BOOST_PP_DEC_054 BOOST_PP_DEC_54
#define BOOST_PP_DEC_055 BOOST_PP_DEC_55
#define BOOST_PP_DEC_056 BOOST_PP_DEC_56
#define BOOST_PP_DEC_057 BOOST_PP_DEC_57
#define BOOST_PP_DEC_058 BOOST_PP_DEC_58
#define BOOST_PP_DEC_059 BOOST_PP_DEC_59
#define BOOST_PP_DEC_060 BOOST_PP_DEC_60
#define BOOST_PP_DEC_061 BOOST_PP_DEC_61
#define BOOST_PP_DEC_062 BOOST_PP_DEC_62
#define BOOST_PP_DEC_063 BOOST_PP_DEC_63

#define XXX_TO_NUMx(x) 0 ## x
#define XXX_TO_NUM(x) BOOST_PP_ADD(0,XXX_TO_NUMx(x))
#define XXX_STRINGIZEX(x) # x
#define XXX_VSTRINGIZE_SINGLE(a,b,x) XXX_STRINGIZE(x)
#define XXX_VSTRINGIZE_TUPLE(tpl) XXX_TUPLE_FOR_EACH(XXX_VSTRINGIZE_SINGLE,,tpl)
#define XXX_TUPLE_SIZE(TUPLE) XXX_TO_NUM(XXX_TUPLE_CHOICE(XXX_TUPLE_SIZE_INTERNAL(TUPLE)))
#define XXX_TUPLE_FOR_EACH(MACRO,DATA,TUPLE) BOOST_PP_LIST_FOR_EACH(MACRO,DATA,BOOST_PP_TUPLE_TO_LIST(XXX_TUPLE_SIZE(TUPLE),TUPLE))
#define XXX_STRINGIZE(x) XXX_STRINGIZEX(x)
#define XXX_VSTRINGIZE(...) XXX_VSTRINGIZE_TUPLE((__VA_ARGS__))
#define XXX_CAST_TO_VOID_ELEMENT(r,data,elem) (void)(elem);
#define XXX_CAST_TO_VOID_INTERNAL(TUPLE) XXX_TUPLE_FOR_EACH(XXX_CAST_TO_VOID_ELEMENT,,TUPLE)    
#define XXX_CAST_TO_VOID(...) XXX_CAST_TO_VOID_INTERNAL((__VA_ARGS__))
#define XXX_ENUM_EXTRACT_SP(en) BOOST_PP_TUPLE_ELEM(XXX_TUPLE_SIZE(en),0,en) = BOOST_PP_TUPLE_ELEM(XXX_TUPLE_SIZE(en),1,en)
#define XXX_ENUM_ELEMENT(r,data,elem) BOOST_PP_IF( XXX_TUPLE_SIZE(elem), XXX_ENUM_EXTRACT_SP(elem), elem) ,
#define XXX_ENUM_EXTRACT_ELEMENT(en) BOOST_PP_TUPLE_ELEM(XXX_TUPLE_SIZE(en),0,en)
#define XXX_ENUM_CASE_ELEMENT(en) BOOST_PP_IF( XXX_TUPLE_SIZE(en), XXX_ENUM_EXTRACT_ELEMENT(en), en )
#define XXX_ENUM_CASE(r,data,elem) case data :: XXX_ENUM_CASE_ELEMENT(elem) : return #data "::" XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem));
#define XXX_ENUM_IFELSE(r,data,elem) else if( en == data :: XXX_ENUM_CASE_ELEMENT(elem)) { return #data "::" XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem)); }
#define XXX_ENUM_CASTLIST(r,data,elem) { XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem)), data :: XXX_ENUM_CASE_ELEMENT(elem) },
#define XXX_ENUM_QUALIFIED_CASTLIST(r,data,elem) { #data "::" XXX_STRINGIZE(XXX_ENUM_CASE_ELEMENT(elem)), data :: XXX_ENUM_CASE_ELEMENT(elem) },

#define XXX_ENUM_INTERNAL(TYPE,NAME,TUPLE)                       \
enum TYPE                                                        \
{                                                                \
   XXX_TUPLE_FOR_EACH(XXX_ENUM_ELEMENT,,TUPLE)                   \
   BOOST_PP_CAT(last_enum_,NAME)                                 \
};                                                               \
                                                                 \
inline                                                           \
const char* to_string( NAME en )                                 \
{                                                                \
   if(false)                                                     \
   {                                                             \
   }                                                             \
   XXX_TUPLE_FOR_EACH(XXX_ENUM_IFELSE,NAME,TUPLE)                \
   else if( en == NAME :: BOOST_PP_CAT(last_enum_,NAME) )        \
   {                                                             \
     return XXX_VSTRINGIZE(NAME,::,BOOST_PP_CAT(last_enum_,NAME));  \
   }                                                             \
   else                                                          \
   {                                                             \
     return "Invalid enum value specified for " # NAME;          \
   }                                                             \
}                                                                \
                                                                 \
inline                                                           \
std::ostream& operator<<( std::ostream& os, const NAME& en )     \
{                                                                \
   os << to_string(en);                                          \
   return os;                                                    \
}                                                                \
                                                                 \
inline                                                           \
NAME do_enum_cast( const std::string& s, const ::xxx::enum_cast_adl_helper<NAME>& ) \
{                                                                \
  static const std::unordered_map<std::string,NAME> map =        \
  {                                                              \
    XXX_TUPLE_FOR_EACH(XXX_ENUM_CASTLIST,NAME,TUPLE)             \
    XXX_TUPLE_FOR_EACH(XXX_ENUM_QUALIFIED_CASTLIST,NAME,TUPLE)   \
  };                                                             \
                                                                 \
  auto cit = map.find(s);                                        \
  if( cit == map.end() )                                         \
  {                                                              \
    throw std::runtime_error("Invalid value to cast to enum");   \
  }                                                              \
  return cit->second;                                            \
}

#define XXX_ENUM(NAME,TUPLE) XXX_ENUM_INTERNAL(NAME,NAME,TUPLE)
#define XXX_ENUM_CLASS(NAME,TUPLE) XXX_ENUM_INTERNAL(class NAME,NAME,TUPLE)
#define XXX_ENUM_CLASS_TYPE(NAME,TYPE,TUPLE) XXX_ENUM_INTERNAL(class NAME : TYPE,NAME,TUPLE)
#define XXX_ENUM_TYPE(NAME,TYPE,TUPLE) XXX_ENUM_INTERNAL(NAME : TYPE,NAME,TUPLE)

использование

#include "xxx_enum.h"  // the above lib
#include <iostream>

XXX_ENUM(foo,(a,b,(c,42)));

int main()
{
  std::cout << "foo::a = "            << foo::a            <<'\n';
  std::cout << "(int)foo::c = "       << (int)foo::c       <<'\n';
  std::cout << "to_string(foo::b) = " << to_string(foo::b) <<'\n';
  std::cout << "xxx::enum_cast<foo>(\"b\") = " << xxx::enum_cast<foo>("b") <<'\n';
}

Компиляция (скопировать вставить заголовок в main.cpp)

> g++ --version | sed 1q
g++ (GCC) 4.9.2

> g++ -std=c++14 -pedantic -Wall -Wextra main.cpp
main.cpp:268:31: warning: extra ';' [-Wpedantic]
     XXX_ENUM(foo,(a,b,(c,42)));
                               ^

Выход

foo::a = foo::a
(int)foo::c = 42
to_string(foo::b) = foo::b
xxx::enum_cast<foo>("b") = foo::b

Просто создайте свои перечисления. Написание генератора для этой цели занимает около пяти минут.

Генератор кода на Java и Python, супер легко портировать на любой язык, который вам нравится, включая C++.

Также супер легко расширить любой функциональностью, которую вы хотите.

Пример ввода:

First = 5
Second
Third = 7
Fourth
Fifth=11

сгенерированный заголовок:

#include <iosfwd>

enum class Hallo
{
    First = 5,
    Second = 6,
    Third = 7,
    Fourth = 8,
    Fifth = 11
};

std::ostream & operator << (std::ostream &, const Hallo&);

сгенерированный файл cpp

#include <ostream>

#include "Hallo.h"

std::ostream & operator << (std::ostream &out, const Hallo&value)
{
    switch(value)
    {
    case Hallo::First:
        out << "First";
        break;
    case Hallo::Second:
        out << "Second";
        break;
    case Hallo::Third:
        out << "Third";
        break;
    case Hallo::Fourth:
        out << "Fourth";
        break;
    case Hallo::Fifth:
        out << "Fifth";
        break;
    default:
        out << "<unknown>";
    }

    return out;
}

И генератор, в очень краткой форме, в качестве шаблона для портирования и расширения. Этот пример кода действительно пытается избежать перезаписи любых файлов, но все равно использует его на свой страх и риск.

package cppgen;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.charset.Charset;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class EnumGenerator
{
    static void fail(String message)
    {
        System.err.println(message);
        System.exit(1);
    }

    static void run(String[] args)
    throws Exception
    {
        Pattern pattern = Pattern.compile("\\s*(\\w+)\\s*(?:=\\s*(\\d+))?\\s*", Pattern.UNICODE_CHARACTER_CLASS);
        Charset charset = Charset.forName("UTF8");
        String tab = "    ";

        if (args.length != 3)
        {
            fail("Required arguments: <enum name> <input file> <output dir>");
        }

        String enumName = args[0];

        File inputFile = new File(args[1]);

        if (inputFile.isFile() == false)
        {
            fail("Not a file: [" + inputFile.getCanonicalPath() + "]");
        }

        File outputDir = new File(args[2]);

        if (outputDir.isDirectory() == false)
        {
            fail("Not a directory: [" + outputDir.getCanonicalPath() + "]");
        }

        File headerFile = new File(outputDir, enumName + ".h");
        File codeFile = new File(outputDir, enumName + ".cpp");

        for (File file : new File[] { headerFile, codeFile })
        {
            if (file.exists())
            {
                fail("Will not overwrite file [" + file.getCanonicalPath() + "]");
            }
        }

        int nextValue = 0;

        Map<String, Integer> fields = new LinkedHashMap<>();

        try
        (
            BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(inputFile), charset));
        )
        {
            while (true)
            {
                String line = reader.readLine();

                if (line == null)
                {
                    break;
                }

                if (line.trim().length() == 0)
                {
                    continue;
                }

                Matcher matcher = pattern.matcher(line);

                if (matcher.matches() == false)
                {
                    fail("Syntax error: [" + line + "]");
                }

                String fieldName = matcher.group(1);

                if (fields.containsKey(fieldName))
                {
                    fail("Double fiend name: " + fieldName);
                }

                String valueString = matcher.group(2);

                if (valueString != null)
                {
                    int value = Integer.parseInt(valueString);

                    if (value < nextValue)
                    {
                        fail("Not a monotonous progression from " + nextValue + " to " + value + " for enum field " + fieldName);
                    }

                    nextValue = value;
                }

                fields.put(fieldName, nextValue);

                ++nextValue;
            }
        }

        try
        (
            PrintWriter headerWriter = new PrintWriter(new OutputStreamWriter(new FileOutputStream(headerFile), charset));
            PrintWriter codeWriter = new PrintWriter(new OutputStreamWriter(new FileOutputStream(codeFile), charset));
        )
        {
            headerWriter.println();
            headerWriter.println("#include <iosfwd>");
            headerWriter.println();
            headerWriter.println("enum class " + enumName);
            headerWriter.println('{');
            boolean first = true;
            for (Entry<String, Integer> entry : fields.entrySet())
            {
                if (first == false)
                {
                    headerWriter.println(",");
                }

                headerWriter.print(tab + entry.getKey() + " = " + entry.getValue());

                first = false;
            }
            if (first == false)
            {
                headerWriter.println();
            }
            headerWriter.println("};");
            headerWriter.println();
            headerWriter.println("std::ostream & operator << (std::ostream &, const " + enumName + "&);");
            headerWriter.println();

            codeWriter.println();
            codeWriter.println("#include <ostream>");
            codeWriter.println();
            codeWriter.println("#include \"" + enumName + ".h\"");
            codeWriter.println();
            codeWriter.println("std::ostream & operator << (std::ostream &out, const " + enumName + "&value)");
            codeWriter.println('{');
            codeWriter.println(tab + "switch(value)");
            codeWriter.println(tab + '{');
            first = true;
            for (Entry<String, Integer> entry : fields.entrySet())
            {
                codeWriter.println(tab + "case " + enumName + "::" + entry.getKey() + ':');
                codeWriter.println(tab + tab + "out << \"" + entry.getKey() + "\";");
                codeWriter.println(tab + tab + "break;");

                first = false;
            }
            codeWriter.println(tab + "default:");
            codeWriter.println(tab + tab + "out << \"<unknown>\";");
            codeWriter.println(tab + '}');
            codeWriter.println();
            codeWriter.println(tab + "return out;");
            codeWriter.println('}');
            codeWriter.println();
        }
    }

    public static void main(String[] args)
    {
        try
        {
            run(args);
        }
        catch(Exception exc)
        {
            exc.printStackTrace();
            System.exit(1);
        }
    }
}

И порт для Python 3.5, потому что достаточно отличается, чтобы быть потенциально полезным

import re
import collections
import sys
import io
import os

def fail(*args):
    print(*args)
    exit(1)

pattern = re.compile(r'\s*(\w+)\s*(?:=\s*(\d+))?\s*')
tab = "    "

if len(sys.argv) != 4:
    n=0
    for arg in sys.argv:
        print("arg", n, ":", arg, " / ", sys.argv[n])
        n += 1
    fail("Required arguments: <enum name> <input file> <output dir>")

enumName = sys.argv[1]

inputFile = sys.argv[2]

if not os.path.isfile(inputFile):
    fail("Not a file: [" + os.path.abspath(inputFile) + "]")

outputDir = sys.argv[3]

if not os.path.isdir(outputDir):
    fail("Not a directory: [" + os.path.abspath(outputDir) + "]")

headerFile = os.path.join(outputDir, enumName + ".h")
codeFile = os.path.join(outputDir, enumName + ".cpp")

for file in [ headerFile, codeFile ]:
    if os.path.exists(file):
        fail("Will not overwrite file [" + os.path.abspath(file) + "]")

nextValue = 0

fields = collections.OrderedDict()

for line in open(inputFile, 'r'):
    line = line.strip()

    if len(line) == 0:
        continue

    match = pattern.match(line)

    if match == None:
        fail("Syntax error: [" + line + "]")

    fieldName = match.group(1)

    if fieldName in fields:
        fail("Double field name: " + fieldName)

    valueString = match.group(2)

    if valueString != None:
        value = int(valueString)

        if value < nextValue:
            fail("Not a monotonous progression from " + nextValue + " to " + value + " for enum field " + fieldName)

        nextValue = value

    fields[fieldName] = nextValue

    nextValue += 1

headerWriter = open(headerFile, 'w')
codeWriter = open(codeFile, 'w')

try:
    headerWriter.write("\n")
    headerWriter.write("#include <iosfwd>\n")
    headerWriter.write("\n")
    headerWriter.write("enum class " + enumName + "\n")
    headerWriter.write("{\n")
    first = True
    for fieldName, fieldValue in fields.items():
        if not first:
            headerWriter.write(",\n")

        headerWriter.write(tab + fieldName + " = " + str(fieldValue))

        first = False
    if not first:
        headerWriter.write("\n")
    headerWriter.write("};\n")
    headerWriter.write("\n")
    headerWriter.write("std::ostream & operator << (std::ostream &, const " + enumName + "&);\n")
    headerWriter.write("\n")

    codeWriter.write("\n")
    codeWriter.write("#include <ostream>\n")
    codeWriter.write("\n")
    codeWriter.write("#include \"" + enumName + ".h\"\n")
    codeWriter.write("\n")
    codeWriter.write("std::ostream & operator << (std::ostream &out, const " + enumName + "&value)\n")
    codeWriter.write("{\n")
    codeWriter.write(tab + "switch(value)\n")
    codeWriter.write(tab + "{\n")
    for fieldName in fields.keys():
        codeWriter.write(tab + "case " + enumName + "::" + fieldName + ":\n")
        codeWriter.write(tab + tab + "out << \"" + fieldName + "\";\n")
        codeWriter.write(tab + tab + "break;\n")
    codeWriter.write(tab + "default:\n")
    codeWriter.write(tab + tab + "out << \"<unknown>\";\n")
    codeWriter.write(tab + "}\n")
    codeWriter.write("\n")
    codeWriter.write(tab + "return out;\n")
    codeWriter.write("}\n")
    codeWriter.write("\n")
finally:
    headerWriter.close()
    codeWriter.close()

Вы можете злоупотреблять пользовательскими литералами для достижения желаемого результата:

      enum
{
  AAA = "AAA"_h8,
  BB = "BB"_h8,
};
   
std::cout << h8::to_string(AAA) << std::endl;
std::cout << h8::to_string(BB) << std::endl;

Это упаковывает строку в целое число, что является обратимым. Посмотрите пример здесь .

Я взял идею у @antron и реализовал ее по-другому: создание истинного класса enum.

Эта реализация отвечает всем требованиям, перечисленным в исходном вопросе, но в настоящее время имеет только одно реальное ограничение: она предполагает, что значения перечисления либо не предоставлены, либо, если они предоставляются, должны начинаться с 0 и увеличиваться последовательно без пробелов.

Это не внутреннее ограничение - просто я не использую специальные значения enum. Если это необходимо, можно заменить поиск векторов традиционной реализацией switch/case.

Решение использует некоторый C++17 для встроенных переменных, но этого можно легко избежать при необходимости. Он также использует boost: trim из-за простоты.

Самое главное, что требуется всего 30 строк кода и никаких макросов черной магии. Код ниже. Он должен быть помещен в заголовок и включен в несколько модулей компиляции.

Его можно использовать так же, как было предложено ранее в этой теме:

ENUM(Channel, int, Red, Green = 1, Blue)
std::out << "My name is " << Channel::Green;
//prints My name is Green

Пожалуйста, дайте мне знать, если это полезно и как это можно улучшить в дальнейшем.


#include <boost/algorithm/string.hpp>   
struct EnumSupportBase {
  static std::vector<std::string> split(const std::string s, char delim) {
    std::stringstream ss(s);
    std::string item;
    std::vector<std::string> tokens;
    while (std::getline(ss, item, delim)) {
        auto pos = item.find_first_of ('=');
        if (pos != std::string::npos)
            item.erase (pos);
        boost::trim (item);
        tokens.push_back(item);
    }
    return tokens;
  }
};
#define ENUM(EnumName, Underlying, ...) \
    enum class EnumName : Underlying { __VA_ARGS__, _count }; \
    struct EnumName ## Support : EnumSupportBase { \
        static inline std::vector<std::string> _token_names = split(#__VA_ARGS__, ','); \
        static constexpr const char* get_name(EnumName enum_value) { \
            int index = (int)enum_value; \
            if (index >= (int)EnumName::_count || index < 0) \
               return "???"; \
            else \
               return _token_names[index].c_str(); \
        } \
    }; \
    inline std::ostream& operator<<(std::ostream& os, const EnumName & es) { \
        return os << EnumName##Support::get_name(es); \
    } 

Пока вы в порядке с написанием отдельного .h/.cpp пара для каждого запрашиваемого перечисления, это решение работает почти с тем же синтаксисом и возможностями, что и обычное перечисление C++:

// MyEnum.h
#include <EnumTraits.h>
#ifndef ENUM_INCLUDE_MULTI
#pragma once
#end if

enum MyEnum : int ETRAITS
{
    EDECL(AAA) = -8,
    EDECL(BBB) = '8',
    EDECL(CCC) = AAA + BBB
};

.cpp Файл состоит из 3 строк шаблона:

// MyEnum.cpp
#define ENUM_DEFINE MyEnum
#define ENUM_INCLUDE <MyEnum.h>
#include <EnumTraits.inl>

Пример использования:

for (MyEnum value : EnumTraits<MyEnum>::GetValues())
    std::cout << EnumTraits<MyEnum>::GetName(value) << std::endl;

Код

Это решение требует 2 исходных файла:

// EnumTraits.h
#pragma once
#include <string>
#include <unordered_map>
#include <vector>

#define ETRAITS
#define EDECL(x) x

template <class ENUM>
class EnumTraits
{
public:
    static const std::vector<ENUM>& GetValues()
    {
        return values;
    }

    static ENUM GetValue(const char* name)
    {
        auto match = valueMap.find(name);
        return (match == valueMap.end() ? ENUM() : match->second);
    }

    static const char* GetName(ENUM value)
    {
        auto match = nameMap.find(value);
        return (match == nameMap.end() ? nullptr : match->second);
    }

public:
    EnumTraits() = delete;

    using vector_type = std::vector<ENUM>;
    using name_map_type = std::unordered_map<ENUM, const char*>;
    using value_map_type = std::unordered_map<std::string, ENUM>;

private:
    static const vector_type values;
    static const name_map_type nameMap;
    static const value_map_type valueMap;
};

struct EnumInitGuard{ constexpr const EnumInitGuard& operator=(int) const { return *this; } };
template <class T> constexpr T& operator<<=(T&& x, const EnumInitGuard&) { return x; }

...а также

// EnumTraits.inl
#define ENUM_INCLUDE_MULTI

#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

using EnumType = ENUM_DEFINE;
using TraitsType = EnumTraits<EnumType>;
using VectorType = typename TraitsType::vector_type;
using NameMapType = typename TraitsType::name_map_type;
using ValueMapType = typename TraitsType::value_map_type;
using NamePairType = typename NameMapType::value_type;
using ValuePairType = typename ValueMapType::value_type;

#define ETRAITS ; const VectorType TraitsType::values
#define EDECL(x) EnumType::x <<= EnumInitGuard()
#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

#define ETRAITS ; const NameMapType TraitsType::nameMap
#define EDECL(x) NamePairType(EnumType::x, #x) <<= EnumInitGuard()
#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

#define ETRAITS ; const ValueMapType TraitsType::valueMap
#define EDECL(x) ValuePairType(#x, EnumType::x) <<= EnumInitGuard()
#include ENUM_INCLUDE
#undef ETRAITS
#undef EDECL

объяснение

В этой реализации используется тот факт, что заключенный в скобки список элементов определения перечисления может также использоваться в качестве связанного списка инициализатора для инициализации члена класса.

когда ETRAITS оценивается в контексте EnumTraits.inl, он расширяется до определения статического члена для EnumTraits<> учебный класс.

EDECL макрос преобразует каждый член перечисления в значения списка инициализатора, которые впоследствии передаются в конструктор члена для заполнения информации перечисления.

EnumInitGuard Класс предназначен для использования значений инициализатора перечисления, а затем для его свертывания, оставляя чистый список данных перечисления.

Выгоды

  • c++ -подобный синтаксис
  • Работает одинаково для обоих enum а также enum class (*почти)
  • Работает на enum типы с любым числовым базовым типом
  • Работает на enum типы с автоматическими, явными и фрагментированными значениями инициализатора
  • Работает для массового переименования (сохранены целочисленные ссылки)
  • Всего 5 символов препроцессора (3 глобальных)

* В отличие от enums , инициализаторы в enum class типы, которые ссылаются на другие значения из того же перечисления, должны иметь эти значения полностью квалифицированными

Disbenefits

  • Требуется отдельный .h/.cpp пара для каждого запрашиваемого enum
  • Зависит от замысловатых macro а также include магия
  • Незначительные синтаксические ошибки превращаются в гораздо большие ошибки
  • определяющий class или же namespace Перечисленные области видимости нетривиальны
  • Нет инициализации времени компиляции

Комментарии

Intellisense будет немного жаловаться на доступ частного члена при открытии EnumTraits.inl, но поскольку расширенные макросы на самом деле определяют членов класса, на самом деле это не проблема.

#ifndef ENUM_INCLUDE_MULTI Блок в верхней части заголовочного файла - это незначительное раздражение, которое, вероятно, можно сжать в макрос или что-то еще, но он достаточно мал, чтобы жить с его текущим размером.

Чтобы объявить перечисление в области имен, требуется, чтобы перечисление сначала было объявлено вперед в пределах его пространства имен, а затем определено в глобальном пространстве имен. Кроме того, любые инициализаторы перечисления, использующие значения одного и того же перечисления, должны иметь эти значения полностью квалифицированными.

namespace ns { enum MyEnum : int; }
enum ns::MyEnum : int ETRAITS
{
    EDECL(AAA) = -8,
    EDECL(BBB) = '8',
    EDECL(CCC) = ns::MyEnum::AAA + ns::MyEnum::BBB
}

Я тоже был разочарован этой проблемой в течение долгого времени, наряду с проблемой правильного преобразования типа в строку. Однако, что касается последней проблемы, я был удивлен решением, объясненным в разделе Возможно ли напечатать тип переменной в стандартном C++?, используя идею из Могу ли я получить имена типов C++ способом constexpr?, Используя эту технику, можно получить аналогичную функцию для получения значения enum в виде строки:

#include <iostream>
using namespace std;

class static_string
{
    const char* const p_;
    const std::size_t sz_;

public:
    typedef const char* const_iterator;

    template <std::size_t N>
    constexpr static_string(const char(&a)[N]) noexcept
        : p_(a)
        , sz_(N - 1)
    {}

    constexpr static_string(const char* p, std::size_t N) noexcept
        : p_(p)
        , sz_(N)
    {}

    constexpr const char* data() const noexcept { return p_; }
    constexpr std::size_t size() const noexcept { return sz_; }

    constexpr const_iterator begin() const noexcept { return p_; }
    constexpr const_iterator end()   const noexcept { return p_ + sz_; }

    constexpr char operator[](std::size_t n) const
    {
        return n < sz_ ? p_[n] : throw std::out_of_range("static_string");
    }
};

inline std::ostream& operator<<(std::ostream& os, static_string const& s)
{
    return os.write(s.data(), s.size());
}

/// \brief Get the name of a type
template <class T>
static_string typeName()
{
#ifdef __clang__
    static_string p = __PRETTY_FUNCTION__;
    return static_string(p.data() + 30, p.size() - 30 - 1);
#elif defined(_MSC_VER)
    static_string p = __FUNCSIG__;
    return static_string(p.data() + 37, p.size() - 37 - 7);
#endif

}

namespace details
{
    template <class Enum>
    struct EnumWrapper
    {
        template < Enum enu >
        static static_string name()
        {
#ifdef __clang__
            static_string p = __PRETTY_FUNCTION__;
            static_string enumType = typeName<Enum>();
            return static_string(p.data() + 73 + enumType.size(), p.size() - 73 - enumType.size() - 1);
#elif defined(_MSC_VER)
            static_string p = __FUNCSIG__;
            static_string enumType = typeName<Enum>();
            return static_string(p.data() + 57 + enumType.size(), p.size() - 57 - enumType.size() - 7);
#endif
        }
    };
}

/// \brief Get the name of an enum value
template <typename Enum, Enum enu>
static_string enumName()
{
    return details::EnumWrapper<Enum>::template name<enu>();
}

enum class Color
{
    Blue = 0,
    Yellow = 1
};


int main() 
{
    std::cout << "_" << typeName<Color>() << "_"  << std::endl;
    std::cout << "_" << enumName<Color, Color::Blue>() << "_"  << std::endl;
    return 0;
}

Приведенный выше код был протестирован только на Clang (см. https://ideone.com/je5Quv) и VS2015, но его следует адаптировать к другим компиляторам, немного поиграв с целочисленными константами. Конечно, он все еще использует макросы под капотом, но, по крайней мере, один не нуждается в доступе к реализации enum.

Вы можете использовать библиотеку отражений, например, Ponder:

enum class MyEnum
{
    Zero = 0,
    One  = 1,
    Two  = 2
};

ponder::Enum::declare<MyEnum>()
    .value("Zero", MyEnum::Zero)
    .value("One",  MyEnum::One)
    .value("Two",  MyEnum::Two);

ponder::EnumObject zero(MyEnum::Zero);

zero.name(); // -> "Zero"

Я не уверен, что этот подход уже описан в одном из других ответов (на самом деле это так, см. Ниже). Я сталкивался с проблемой много раз и не нашел решения, которое бы не использовало запутанные макросы или сторонние библиотеки. Поэтому я решил написать свою собственную версию макроса.

То, что я хочу включить, является эквивалентом

enum class test1 { ONE, TWO = 13, SIX };

std::string toString(const test1& e) { ... }

int main() {
    test1 x;
    std::cout << toString(x) << "\n";
    std::cout << toString(test1::TWO) << "\n";
    std::cout << static_cast<std::underlying_type<test1>::type>(test1::TWO) << "\n";
    //std::cout << toString(123);// invalid
}

который должен напечатать

ONE
TWO
13

Я не фанат макросов. Однако, если C++ изначально не поддерживает преобразование перечислений в строки, нужно использовать генерацию кода и / или макросы (и я сомневаюсь, что это произойдет слишком рано). Я использую X-макрос:

// x_enum.h
#include <string>
#include <map>
#include <type_traits>
#define x_begin enum class x_name {
#define x_val(X) X
#define x_value(X,Y) X = Y
#define x_end };
x_enum_def
#undef x_begin
#undef x_val
#undef x_value
#undef x_end

#define x_begin inline std::string toString(const x_name& e) { \
                static std::map<x_name,std::string> names = { 
#define x_val(X)      { x_name::X , #X }
#define x_value(X,Y)  { x_name::X , #X }
#define x_end }; return names[e]; }
x_enum_def
#undef x_begin
#undef x_val
#undef x_value
#undef x_end
#undef x_name
#undef x_enum_def

Большинство из них - это определение и отмена определения символов, которые пользователь передаст в качестве параметра X-marco через include. Использование так

#define x_name test1
#define x_enum_def x_begin x_val(ONE) , \
                           x_value(TWO,13) , \
                           x_val(SIX) \
                   x_end
#include "x_enum.h"

Live Demo

Обратите внимание, что я еще не включил выбор базового типа. Пока что мне это не нужно, но его нужно изменить, чтобы включить его.

Только после написания этого я понял, что это довольно похоже на ответ eferions. Может быть, я читал это раньше, и, возможно, это было основным источником вдохновения. Я всегда плохо понимал X-макросы, пока не написал свой;).

Библиотека magic_enum обеспечивает функциональность enum-to-string и string-enum, состоит из одного файла только для заголовка и использует функциональность C++-17. Пример использования из readme:

#include "magic_enum.hpp"

enum Color { RED = 2, BLUE = 4, GREEN = 8 };
Color color = Color::RED;

auto color_name = magic_enum::enum_name(color);
// color_name -> "RED"

std::string color_name{"GREEN"};
auto color = magic_enum::enum_cast<Color>(color_name)
if (color.has_value()) {
  // color.value() -> Color::GREEN
};

Мое решение с использованием препроцессора define.

Вы можете проверить этот код на https://repl.it/@JomaCorpFX/nameof#main.cpp

      #include <iostream>
#include <stdexcept>
#include <regex>

typedef std::string String;
using namespace std::literals::string_literals;

class Strings
{
public:
    static String TrimStart(const std::string& data)
    {
        String s = data;
        s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) {
            return !std::isspace(ch);
        }));
        return s;
    }

    static String TrimEnd(const std::string& data)
    {
        String s = data;
        s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) {
            return !std::isspace(ch);
        }).base(),
            s.end());
        return s;
    }

    static String Trim(const std::string& data)
    {
        return TrimEnd(TrimStart(data));
    }

    static String Replace(const String& data, const String& toFind, const String& toReplace)
    {
        String result = data;
        size_t pos = 0;
        while ((pos = result.find(toFind, pos)) != String::npos)
        {
            result.replace(pos, toFind.length(), toReplace);
            pos += toReplace.length();
            pos = result.find(toFind, pos);
        }
        return result;
    }

};

static String Nameof(const String& name)
{
    std::smatch groups;
    String str = Strings::Trim(name);
    if (std::regex_match(str, groups, std::regex(u8R"(^&?([_a-zA-Z]\w*(->|\.|::))*([_a-zA-Z]\w*)$)")))
    {
        if (groups.size() == 4)
        {
            return groups[3];
        }
    }
    throw std::invalid_argument(Strings::Replace(u8R"(nameof(#). Invalid identifier "#".)", u8"#", name));
}

#define nameof(name) Nameof(u8## #name ## s)
#define cnameof(name) Nameof(u8## #name ## s).c_str()

enum TokenType {
    COMMA,
    PERIOD,
    Q_MARK
};

struct MyClass
{
    enum class MyEnum : char {
        AAA = -8,
        BBB = '8',
        CCC = AAA + BBB
    };
};

int main() {
    String greetings = u8"Hello"s;
    std::cout << nameof(COMMA) << std::endl;
    std::cout << nameof(TokenType::PERIOD) << std::endl;
    std::cout << nameof(TokenType::Q_MARK) << std::endl;
    std::cout << nameof(int) << std::endl;
    std::cout << nameof(std::string) << std::endl;
    std::cout << nameof(Strings) << std::endl;
    std::cout << nameof(String) << std::endl;
    std::cout << nameof(greetings) << std::endl;
    std::cout << nameof(&greetings) << std::endl;
    std::cout << nameof(greetings.c_str) << std::endl;
    std::cout << nameof(std::string::npos) << std::endl;
    std::cout << nameof(MyClass::MyEnum::AAA) << std::endl;
    std::cout << nameof(MyClass::MyEnum::BBB) << std::endl;
    std::cout << nameof(MyClass::MyEnum::CCC) << std::endl;


    std::cin.get();
    return 0;
}

Выход

      COMMA
PERIOD
Q_MARK
int
string
Strings
String
greetings
greetings
c_str
npos
AAA
BBB
CCC

Лязг

Visual C ++

Очень простое решение с одним большим ограничением: вы не можете назначать пользовательские значения enum значения, но с правильным регулярным выражением, вы могли бы. Вы также можете добавить карту, чтобы перевести их обратно enum значения без гораздо больших усилий:

#include <vector>
#include <string>
#include <regex>
#include <iterator>

std::vector<std::string> split(const std::string& s, 
                               const std::regex& delim = std::regex(",\\s*"))
{
    using namespace std;
    vector<string> cont;
    copy(regex_token_iterator<string::const_iterator>(s.begin(), s.end(), delim, -1), 
         regex_token_iterator<string::const_iterator>(),
         back_inserter(cont));
    return cont;
}

#define EnumType(Type, ...)     enum class Type { __VA_ARGS__ }

#define EnumStrings(Type, ...)  static const std::vector<std::string> \
                                Type##Strings = split(#__VA_ARGS__);

#define EnumToString(Type, ...) EnumType(Type, __VA_ARGS__); \
                                EnumStrings(Type, __VA_ARGS__)

Пример использования:

EnumToString(MyEnum, Red, Green, Blue);

(Аналог /questions/45741807/kak-preobrazovat-peremennuyu-tipa-enum-v-stroku/49388741#49388741, слегка измененный).

Вот мое собственное решение с минимальным определением магии и поддержкой индивидуальных заданий enum.

Вот заголовочный файл:

#pragma once
#include <string>
#include <map>
#include <regex>

template <class Enum>
class EnumReflect
{
public:
    static const char* getEnums() { return ""; }
};

//
//  Just a container for each enumeration type.
//
template <class Enum>
class EnumReflectBase
{
public:
    static std::map<std::string, int> enum2int;
    static std::map<int, std::string> int2enum;

    static void EnsureEnumMapReady( const char* enumsInfo )
    {
        if (*enumsInfo == 0 || enum2int.size() != 0 )
            return;

        // Should be called once per each enumeration.
        std::string senumsInfo(enumsInfo);
        std::regex re("^([a-zA-Z_][a-zA-Z0-9_]+) *=? *([^,]*)(,|$) *");     // C++ identifier to optional " = <value>"
        std::smatch sm;
        int value = 0;

        for (; regex_search(senumsInfo, sm, re); senumsInfo = sm.suffix(), value++)
        {
            string enumName = sm[1].str();
            string enumValue = sm[2].str();

            if (enumValue.length() != 0)
                value = atoi(enumValue.c_str());

            enum2int[enumName] = value;
            int2enum[value] = enumName;
        }
    }
};

template <class Enum>
std::map<std::string, int> EnumReflectBase<Enum>::enum2int;

template <class Enum>
std::map<int, std::string> EnumReflectBase<Enum>::int2enum;


#define DECLARE_ENUM(name, ...)                                         \
    enum name { __VA_ARGS__ };                                          \
    template <>                                                         \
    class EnumReflect<##name>: public EnumReflectBase<##name> {         \
    public:                                                             \
        static const char* getEnums() { return #__VA_ARGS__; }          \
    };




/*
    Basic usage:

    Declare enumeration:

DECLARE_ENUM( enumName,

    enumValue1,
    enumValue2,
    enumValue3 = 5,

    // comment
    enumValue4
);

    Conversion logic:

    From enumeration to string:

        printf( EnumToString(enumValue3).c_str() );

    From string to enumeration:

       enumName value;

       if( !StringToEnum("enumValue4", value) )
            printf("Conversion failed...");
*/

//
//  Converts enumeration to string, if not found - empty string is returned.
//
template <class T>
std::string EnumToString(T t)
{
    EnumReflect<T>::EnsureEnumMapReady(EnumReflect<T>::getEnums());
    auto& int2enum = EnumReflect<T>::int2enum;
    auto it = int2enum.find(t);

    if (it == int2enum.end())
        return "";

    return it->second;
}

//
//  Converts string to enumeration, if not found - false is returned.
//
template <class T>
bool StringToEnum(const char* enumName, T& t)
{
    EnumReflect<T>::EnsureEnumMapReady(EnumReflect<T>::getEnums());
    auto& enum2int = EnumReflect<T>::enum2int;
    auto it = enum2int.find(enumName);

    if (it == enum2int.end())
        return false;

    t = (T) it->second;
    return true;
}

А вот пример тестового приложения:

DECLARE_ENUM(TestEnum,
    ValueOne,
    ValueTwo,
    ValueThree = 5,
    ValueFour = 7
);

DECLARE_ENUM(TestEnum2,
    ValueOne2 = -1,
    ValueTwo2,
    ValueThree2 = -4,
    ValueFour2
);

void main(void)
{
    string sName1 = EnumToString(ValueOne);
    string sName2 = EnumToString(ValueTwo);
    string sName3 = EnumToString(ValueThree);
    string sName4 = EnumToString(ValueFour);

    TestEnum t1, t2, t3, t4, t5 = ValueOne;
    bool b1 = StringToEnum(sName1.c_str(), t1);
    bool b2 = StringToEnum(sName2.c_str(), t2);
    bool b3 = StringToEnum(sName3.c_str(), t3);
    bool b4 = StringToEnum(sName4.c_str(), t4);
    bool b5 = StringToEnum("Unknown", t5);

    string sName2_1 = EnumToString(ValueOne2);
    string sName2_2 = EnumToString(ValueTwo2);
    string sName2_3 = EnumToString(ValueThree2);
    string sName2_4 = EnumToString(ValueFour2);

    TestEnum2 t2_1, t2_2, t2_3, t2_4, t2_5 = ValueOne2;
    bool b2_1 = StringToEnum(sName2_1.c_str(), t2_1);
    bool b2_2 = StringToEnum(sName2_2.c_str(), t2_2);
    bool b2_3 = StringToEnum(sName2_3.c_str(), t2_3);
    bool b2_4 = StringToEnum(sName2_4.c_str(), t2_4);
    bool b2_5 = StringToEnum("Unknown", t2_5);

Обновленная версия того же заголовочного файла будет храниться здесь:

https://github.com/tapika/cppscriptcore/blob/master/SolutionProjectModel/EnumReflect.h

РЕДАКТИРОВАТЬ: проверьте ниже для более новой версии

Как упоминалось выше, N4113 является окончательным решением этого вопроса, но нам придется ждать более года, чтобы увидеть его выход.

Между тем, если вам нужна такая функция, вам придется прибегнуть к "простым" шаблонам и некоторой магии препроцессора.

счетчик

template<typename T>
class Enum final
{
    const char* m_name;
    const T m_value;
    static T m_counter;

public:
    Enum(const char* str, T init = m_counter) : m_name(str), m_value(init) {m_counter = (init + 1);}

    const T value() const {return m_value;}
    const char* name() const {return m_name;}
};

template<typename T>
T Enum<T>::m_counter = 0;

#define ENUM_TYPE(x)      using Enum = Enum<x>;
#define ENUM_DECL(x,...)  x(#x,##__VA_ARGS__)
#define ENUM(...)         const Enum ENUM_DECL(__VA_ARGS__);

использование

#include <iostream>

//the initialization order should be correct in all scenarios
namespace Level
{
    ENUM_TYPE(std::uint8)
    ENUM(OFF)
    ENUM(SEVERE)
    ENUM(WARNING)
    ENUM(INFO, 10)
    ENUM(DEBUG)
    ENUM(ALL)
}

namespace Example
{
    ENUM_TYPE(long)
    ENUM(A)
    ENUM(B)
    ENUM(C, 20)
    ENUM(D)
    ENUM(E)
    ENUM(F)
}

int main(int argc, char** argv)
{
    Level::Enum lvl = Level::WARNING;
    Example::Enum ex = Example::C;
    std::cout << lvl.value() << std::endl; //2
    std::cout << ex.value() << std::endl; //20
}

Простое объяснение

Enum<T>::m_counter устанавливается в 0 внутри каждого объявления пространства имен.
(Может ли кто-нибудь указать мне, где ^^ это поведение ^^ упоминается в стандарте?)
Магия препроцессора автоматизирует объявление перечислителей.

Недостатки

  • Это не правда enum тип, следовательно, не продвигается в int
  • Не может использоваться в случаях переключения

Альтернативное решение

Это жертвует нумерацией строк (не совсем), но может использоваться в случаях переключения.

#define ENUM_TYPE(x) using type = Enum<x>
#define ENUM(x)      constexpr type x{__LINE__,#x}

template<typename T>
struct Enum final
{
    const T value;
    const char* name;

    constexpr operator const T() const noexcept {return value;}
    constexpr const char* operator&() const noexcept {return name;}
};

описки

#line 0 конфликтует с -pedantic на GCC и лязг.

Временное решение

Либо начать в #line 1 и вычесть 1 из __LINE__,
Или не используйте -pedantic,
И хотя мы делаем это, избегайте VC++ любой ценой, это всегда было шуткой компилятора.

использование

#include <iostream>

namespace Level
{
    ENUM_TYPE(short);
    #line 0
    ENUM(OFF);
    ENUM(SEVERE);
    ENUM(WARNING);
    #line 10
    ENUM(INFO);
    ENUM(DEBUG);
    ENUM(ALL);
    #line <next line number> //restore the line numbering
};

int main(int argc, char** argv)
{
    std::cout << Level::OFF << std::endl;   // 0
    std::cout << &Level::OFF << std::endl;  // OFF

    std::cout << Level::INFO << std::endl;  // 10
    std::cout << &Level::INFO << std::endl; // INFO

    switch(/* any integer or integer-convertible type */)
    {
    case Level::OFF:
        //...
        break;

    case Level::SEVERE:
        //...
        break;

    //...
    }

    return 0;
}

Реализация и использование в реальной жизни

r3dVoxel - Enum
r3dVoxel - ELoggingLevel

Краткий справочник

#line lineno - cppreference.com

Решения, использующие enum внутри класса /struct (struct default с открытыми членами) и перегруженные операторы:

struct Color
{
    enum Enum { RED, GREEN, BLUE };
    Enum e;

    Color() {}
    Color(Enum e) : e(e) {}

    Color operator=(Enum o) { e = o; return *this; }
    Color operator=(Color o) { e = o.e; return *this; }
    bool operator==(Enum o) { return e == o; }
    bool operator==(Color o) { return e == o.e; }
    operator Enum() const { return e; }

    std::string toString() const
    {
        switch (e)
        {
        case Color::RED:
            return "red";
        case Color::GREEN:
            return "green";
        case Color::BLUE:
            return "blue";
        default:
            return "unknown";
        }
    }
};

Со стороны это выглядит почти точно как перечисление класса:

Color red;
red = Color::RED;
Color blue = Color::BLUE;

cout << red.toString() << " " << Color::GREEN << " " << blue << endl;

Это выведет "красный 1 2". Вы можете перегрузить <<, чтобы синий выводил строку (хотя это может привести к неоднозначности, поэтому это невозможно), но он не будет работать с Color:: GREEN, поскольку он автоматически не преобразуется в Color.

Цель неявного преобразования в Enum (которое неявно преобразуется в int или заданный тип) состоит в том, чтобы сделать:

Color color;
switch (color) ...

Это работает, но это также означает, что эта работа тоже:

int i = color;

С классом enum это не скомпилируется. Вы должны быть осторожны, если вы перегружаете две функции, принимающие enum и integer, или удаляете неявное преобразование...

Другое решение будет включать использование фактического класса enum и статических членов:

struct Color
{
    enum class Enum { RED, GREEN, BLUE };
    static const Enum RED = Enum::RED, GREEN = Enum::GREEN, BLUE = Enum::BLUE;

    //same as previous...
};

Возможно, он занимает больше места и занимает больше времени, но вызывает ошибку компиляции для неявных int-преобразований. Я бы использовал этот из-за этого!

Хотя, конечно, это связано с накладными расходами, но я думаю, что это проще и выглядит лучше, чем другой код, который я видел. Существует также потенциал для добавления функциональности, которая может быть ограничена в пределах класса.

Редактировать: это работает, и большинство из них можно скомпилировать перед выполнением:

class Color
{
public:
    enum class Enum { RED, GREEN, BLUE };
    static const Enum RED = Enum::RED, GREEN = Enum::GREEN, BLUE = Enum::BLUE;

    constexpr Color() : e(Enum::RED) {}
    constexpr Color(Enum e) : e(e) {}

    constexpr bool operator==(Enum o) const { return e == o; }
    constexpr bool operator==(Color o) const { return e == o.e; }
    constexpr operator Enum() const { return e; }

    Color& operator=(Enum o) { const_cast<Enum>(this->e) = o; return *this; }
    Color& operator=(Color o) { const_cast<Enum>(this->e) = o.e; return *this; }

    std::string toString() const
    {
        switch (e)
        {
        case Enum::RED:
            return "red";
        case Enum::GREEN:
            return "green";
        case Enum::BLUE:
            return "blue";
        default:
            return "unknown";
        }
    }
private:
    const Enum e;
};

enum_name — это только заголовок, поддерживает >=C++11 и удобную библиотеку. Это просто и поддерживает только преобразование enum в строку. Во время разработки я стремился поддерживать C++11, используя без макросов и простоту.

Пример

      #include <cstdio>
#include <enum_name.hpp>


enum class rgb_color { red, green, blue, unknown = -1};

// you can specialize enum ranges with overload per enum types
inline auto enum_name(rgb_color c) -> std::string {
    return mgutility::enum_name<-1, 10>(c);
}


int main()
{
    auto x = rgb_color::blue;
    
    // default signature: enum_name<min_value = 0, max_value = 256, Enum typename>(Enum&&) 
    // Changing max_value to not too much greater than enum's max value, it will compiles faster
    puts(mgutility::enum_name<-1, 10>(x).c_str()); // will print "rgb_color::blue" to output
    
    // calling specialized enum ranges function for rgb_color type
    puts(enum_name(x).c_str()); // will print "rgb_color::blue" to output
}

Следующее решение основано на std::array<std::string,N> для данного перечисления.

За enum в std::string преобразование мы можем просто привести перечисление к size_t и искать строку из массива. Операция O(1) и не требует выделения кучи.

#include <boost/preprocessor/seq/transform.hpp>
#include <boost/preprocessor/seq/enum.hpp>
#include <boost/preprocessor/stringize.hpp>

#include <string>
#include <array>
#include <iostream>

#define STRINGIZE(s, data, elem) BOOST_PP_STRINGIZE(elem)

// ENUM
// ============================================================================
#define ENUM(X, SEQ) \
struct X {   \
    enum Enum {BOOST_PP_SEQ_ENUM(SEQ)}; \
    static const std::array<std::string,BOOST_PP_SEQ_SIZE(SEQ)> array_of_strings() { \
        return {{BOOST_PP_SEQ_ENUM(BOOST_PP_SEQ_TRANSFORM(STRINGIZE, 0, SEQ))}}; \
    } \
    static std::string to_string(Enum e) { \
        auto a = array_of_strings(); \
        return a[static_cast<size_t>(e)]; \
    } \
}

За std::string в enum Преобразование мы должны были бы сделать линейный поиск по массиву и привести индекс массива к enum,

Попробуйте здесь с примерами использования: http://coliru.stacked-crooked.com/a/e4212f93bee65076

Редактировать: переработано мое решение, чтобы пользовательский Enum мог использоваться внутри класса.

Эта суть обеспечивает простое отображение, основанное на вариабельных шаблонах C++.

Это упрощенная на C++17 версия карты на основе типов из gist:

#include <cstring> // http://stackru.com/q/24520781

template<typename KeyValue, typename ... RestOfKeyValues>
struct map {
  static constexpr typename KeyValue::key_t get(const char* val) noexcept {
    if constexpr (sizeof...(RestOfKeyValues)==0)  // C++17 if constexpr
      return KeyValue::key; // Returns last element
    else {
      static_assert(KeyValue::val != nullptr,
                  "Only last element may have null name");
      return strcmp(val, KeyValue::val()) 
            ? map<RestOfKeyValues...>::get(val) : KeyValue::key;
    }
  }
  static constexpr const char* get(typename KeyValue::key_t key) noexcept {
    if constexpr (sizeof...(RestOfKeyValues)==0)
      return (KeyValue::val != nullptr) && (key == KeyValue::key)
            ? KeyValue::val() : "";
    else
      return (key == KeyValue::key) 
            ? KeyValue::val() : map<RestOfKeyValues...>::get(key);
  }
};

template<typename Enum, typename ... KeyValues>
class names {
  typedef map<KeyValues...> Map;
public:
  static constexpr Enum get(const char* nam) noexcept {
    return Map::get(nam);
  }
  static constexpr const char* get(Enum key) noexcept {
    return Map::get(key);
  }
};

Пример использования:

enum class fasion {
    fancy,
    classic,
    sporty,
    emo,
    __last__ = emo,
    __unknown__ = -1
};

#define NAME(s) static inline constexpr const char* s() noexcept {return #s;}
namespace name {
    NAME(fancy)
    NAME(classic)
    NAME(sporty)
    NAME(emo)
}

template<auto K, const char* (*V)()>  // C++17 template<auto>
struct _ {
    typedef decltype(K) key_t;
    typedef decltype(V) name_t;
    static constexpr key_t  key = K; // enum id value
    static constexpr name_t val = V; // enum id name
};

typedef names<fasion,
    _<fasion::fancy, name::fancy>,
    _<fasion::classic, name::classic>,
    _<fasion::sporty, name::sporty>,
    _<fasion::emo, name::emo>,
    _<fasion::__unknown__, nullptr>
> fasion_names;

map<KeyValues...> можно использовать в обоих направлениях:

  • fasion_names::get(fasion::emo)
  • fasion_names::get("emo")

Этот пример доступен на godbolt.org

int main ()
{
  constexpr auto str = fasion_names::get(fasion::emo);
  constexpr auto fsn = fasion_names::get(str);
  return (int) fsn;
}

Результат от gcc-7 -std=c++1z -Ofast -S

main:
        mov     eax, 3
        ret

Мои 3 цента, хотя это не совсем то, что хочет опера. Вот соответствующая ссылка.

namespace enums
{

template <typename T, T I, char ...Chars>
struct enums : std::integral_constant<T, I>
{
  static constexpr char const chars[sizeof...(Chars)]{Chars...};
};

template <typename T, T X, typename S, std::size_t ...I>
constexpr auto make(std::index_sequence<I...>) noexcept
{
  return enums<T, X, S().chars[I]...>();
}

#define ENUM(s, n) []() noexcept{\
  struct S { char const (&chars)[sizeof(s)]{s}; };\
  return enums::make<decltype(n), n, S>(\
    std::make_index_sequence<sizeof(s)>());}()

#define ENUM_T(s, n)\
  static constexpr auto s ## _tmp{ENUM(#s, n)};\
  using s ## _enum_t = decltype(s ## _tmp)

template <typename T, typename ...A, std::size_t N>
inline auto map(char const (&s)[N]) noexcept
{
  constexpr auto invalid(~T{});

  auto r{invalid};

  return
    (
      (
        invalid == r ?
          r = std::strncmp(A::chars, s, N) ? invalid : A{} :
          r
      ),
      ...
    );
}

}

int main()
{
  ENUM_T(echo, 0);
  ENUM_T(cat, 1);
  ENUM_T(ls, 2);

  std::cout << echo_enum_t{} << " " << echo_enum_t::chars << std::endl;

  std::cout << enums::map<int, echo_enum_t, cat_enum_t, ls_enum_t>("ls")) << std::endl;

  return 0;
}

Итак, вы создаете тип, который можно преобразовать в целое число и / или строку.

Мой ответ здесь.

Вы можете получить имена значений enum и эти индексы одновременно как deque of string.

Этот метод требует только небольшого копирования и вставки и редактирования.

Полученный результат требует приведения типа из size_t к типу enum-класса, когда вам нужно значение типа enum-класса, но я думаю, что это очень переносимый и мощный способ обработки enum-класса.

enum class myenum
{
  one = 0,
  two,
  three,
};

deque<string> ssplit(const string &_src, boost::regex &_re)
{
  boost::sregex_token_iterator it(_src.begin(), _src.end(), _re, -1);
  boost::sregex_token_iterator e;
  deque<string> tokens;
  while (it != e)
    tokens.push_back(*it++);
  return std::move(tokens);
}

int main()
{
  regex re(",");
  deque<string> tokens = ssplit("one,two,three", re);
  for (auto &t : tokens) cout << t << endl;
    getchar();
  return 0;
}
#define ENUM_MAKE(TYPE, ...) \
        enum class TYPE {__VA_ARGS__};\
        struct Helper_ ## TYPE { \
            static const String& toName(TYPE type) {\
                int index = static_cast<int>(type);\
                return splitStringVec()[index];}\
            static const TYPE toType(const String& name){\
                static std::unordered_map<String,TYPE> typeNameMap;\
                if( typeNameMap.empty() )\
                {\
                    const StringVector& ssVec = splitStringVec();\
                    for (size_t i = 0; i < ssVec.size(); ++i)\
                        typeNameMap.insert(std::make_pair(ssVec[i], static_cast<TYPE>(i)));\
                }\
                return typeNameMap[name];}\
            static const StringVector& splitStringVec() {\
                static StringVector typeNameVector;\
                if(typeNameVector.empty()) \
                {\
                    typeNameVector = StringUtil::split(#__VA_ARGS__, ",");\
                    for (auto& name : typeNameVector)\
                    {\
                        name.erase(std::remove(name.begin(), name.end(), ' '),name.end()); \
                        name = String(#TYPE) + "::" + name;\
                    }\
                }\
                return typeNameVector;\
            }\
        };


using String = std::string;
using StringVector = std::vector<String>;

   StringVector StringUtil::split( const String& str, const String& delims, unsigned int maxSplits, bool preserveDelims)
    {
        StringVector ret;
        // Pre-allocate some space for performance
        ret.reserve(maxSplits ? maxSplits+1 : 10);    // 10 is guessed capacity for most case

        unsigned int numSplits = 0;

        // Use STL methods 
        size_t start, pos;
        start = 0;
        do 
        {
            pos = str.find_first_of(delims, start);
            if (pos == start)
            {
                // Do nothing
                start = pos + 1;
            }
            else if (pos == String::npos || (maxSplits && numSplits == maxSplits))
            {
                // Copy the rest of the string
                ret.push_back( str.substr(start) );
                break;
            }
            else
            {
                // Copy up to delimiter
                ret.push_back( str.substr(start, pos - start) );

                if(preserveDelims)
                {
                    // Sometimes there could be more than one delimiter in a row.
                    // Loop until we don't find any more delims
                    size_t delimStart = pos, delimPos;
                    delimPos = str.find_first_not_of(delims, delimStart);
                    if (delimPos == String::npos)
                    {
                        // Copy the rest of the string
                        ret.push_back( str.substr(delimStart) );
                    }
                    else
                    {
                        ret.push_back( str.substr(delimStart, delimPos - delimStart) );
                    }
                }

                start = pos + 1;
            }
            // parse up to next real data
            start = str.find_first_not_of(delims, start);
            ++numSplits;

        } while (pos != String::npos);



        return ret;
    }

пример

ENUM_MAKE(MY_TEST, MY_1, MY_2, MY_3)


    MY_TEST s1 = MY_TEST::MY_1;
    MY_TEST s2 = MY_TEST::MY_2;
    MY_TEST s3 = MY_TEST::MY_3;

    String z1 = Helper_MY_TEST::toName(s1);
    String z2 = Helper_MY_TEST::toName(s2);
    String z3 = Helper_MY_TEST::toName(s3);

    MY_TEST q1 = Helper_MY_TEST::toType(z1);
    MY_TEST q2 = Helper_MY_TEST::toType(z2);
    MY_TEST q3 = Helper_MY_TEST::toType(z3);

автоматически макрос ENUM_MAKE генерирует "класс enum" и вспомогательный класс с "функцией отражения enum".

Чтобы уменьшить количество ошибок, все сразу определяется только одним ENUM_MAKE.

Преимущество этого кода автоматически создается для размышлений и внимательного изучения макрокода, простого для понимания кода. Производительность 'enum to string', 'string to enum' - это алгоритм O(1).

Недостатком является то, что при первом использовании инициализируется класс-помощник для строкового вектора и карты enum relection. но если вы хотите, вы также будете предварительно инициализированы. -

Ну, еще один вариант. Типичный вариант использования - это когда вам нужны константы для HTTP-глаголов, а также использование значений строковой версии.

Пример:

int main () {

  VERB a = VERB::GET;
  VERB b = VERB::GET;
  VERB c = VERB::POST;
  VERB d = VERB::PUT;
  VERB e = VERB::DELETE;


  std::cout << a.toString() << std::endl;

  std::cout << a << std::endl;

  if ( a == VERB::GET ) {
    std::cout << "yes" << std::endl;
  }

  if ( a == b ) {
    std::cout << "yes" << std::endl;
  }

  if ( a != c ) {
    std::cout << "no" << std::endl;
  }

}

VERB класс:

// -----------------------------------------------------------
// -----------------------------------------------------------
class VERB {

private:

  // private constants
  enum Verb {GET_=0, POST_, PUT_, DELETE_};

  // private string values
  static const std::string theStrings[];

  // private value
  const Verb value;
  const std::string text;

  // private constructor
  VERB (Verb v) :
  value(v), text (theStrings[v])
  {
    // std::cout << " constructor \n";
  }

public:

  operator const char * ()  const { return text.c_str(); }

  operator const std::string ()  const { return text; }

  const std::string toString () const { return text; }

  bool operator == (const VERB & other) const { return (*this).value == other.value; }

  bool operator != (const VERB & other) const { return ! ( (*this) == other); }

  // ---

  static const VERB GET;
  static const VERB POST;
  static const VERB PUT;
  static const VERB DELETE;

};

const std::string VERB::theStrings[] = {"GET", "POST", "PUT", "DELETE"};

const VERB VERB::GET = VERB ( VERB::Verb::GET_ );
const VERB VERB::POST = VERB ( VERB::Verb::POST_ );
const VERB VERB::PUT = VERB ( VERB::Verb::PUT_ );
const VERB VERB::DELETE = VERB ( VERB::Verb::DELETE_ );
// end of file

Мое решение без использования макросов.

преимущества:

  • вы видите именно то, что вы делаете
  • доступ с хэш-картами, так что хорошо для многих ценных перечислений
  • нет необходимости учитывать порядок или непоследовательные значения
  • и перечисление в строку, и перевод строки в перечисление, в то время как добавленное значение перечисления должно быть добавлено только в одном дополнительном месте

недостатки:

  • вам нужно скопировать все значения перечислений в виде текста
  • доступ в хэш-карте должен учитывать строковый регистр
  • обслуживание, если добавление значений является болезненным - необходимо добавить как в enum, так и в карту прямого перевода

так что... до того дня, когда C++ реализует функциональность C# Enum.Parse, я застряну с этим:

            #include <unordered_map>

            enum class Language
            { unknown, 
                Chinese, 
                English, 
                French, 
                German
                // etc etc
            };

            class Enumerations
            {
            public:
                static void fnInit(void);

                static std::unordered_map <std::wstring, Language> m_Language;
                static std::unordered_map <Language, std::wstring> m_invLanguage;

            private:
                static void fnClear();
                static void fnSetValues(void);
                static void fnInvertValues(void);

                static bool m_init_done;
            };

            std::unordered_map <std::wstring, Language> Enumerations::m_Language = std::unordered_map <std::wstring, Language>();
            std::unordered_map <Language, std::wstring> Enumerations::m_invLanguage = std::unordered_map <Language, std::wstring>();

            void Enumerations::fnInit()
            {
                fnClear();
                fnSetValues();
                fnInvertValues();
            }

            void Enumerations::fnClear()
            {
                m_Language.clear();
                m_invLanguage.clear();
            }

            void Enumerations::fnSetValues(void)
            {   
                m_Language[L"unknown"] = Language::unknown;
                m_Language[L"Chinese"] = Language::Chinese;
                m_Language[L"English"] = Language::English;
                m_Language[L"French"] = Language::French;
                m_Language[L"German"] = Language::German;
                // and more etc etc
            }

            void Enumerations::fnInvertValues(void)
            {
                for (auto it = m_Language.begin(); it != m_Language.end(); it++)
                {
                    m_invLanguage[it->second] = it->first;
                }
            }

            // usage -
            //Language aLanguage = Language::English;
            //wstring sLanguage = Enumerations::m_invLanguage[aLanguage];

            //wstring sLanguage = L"French" ;
            //Language aLanguage = Enumerations::m_Language[sLanguage];
Другие вопросы по тегам