Смещение высоты высоты геоида WGS84 для внешних данных GPS на IOS
Для приложения, которое я пишу, мы подключаем устройства IOS с внешним датчиком, который выводит данные GPS по локальной сети Wi-Fi. Эти данные попадают в "сырой" формат по отношению к высоте. Как правило, для любой высоты GPS должен применяться поправочный коэффициент, связанный с высотой геоида WGS84, на основе текущего местоположения.
Например, в следующей контрольной точке Geo ( http://www.ngs.noaa.gov/cgi-bin/ds_mark.prl?PidBox=HV9830), которая находится по адресу Lat 38 56 36.77159 и Lon 077 01 08.34929.
HV9830* NAD 83(2011) POSITION- 38 56 36.77159(N) 077 01 08.34929(W) ADJUSTED
HV9830* NAD 83(2011) ELLIP HT- 42.624 (meters) (06/27/12) ADJUSTED
HV9830* NAD 83(2011) EPOCH - 2010.00
HV9830* NAVD 88 ORTHO HEIGHT - 74.7 (meters) 245. (feet) VERTCON
HV9830 ______________________________________________________________________
HV9830 GEOID HEIGHT - -32.02 (meters) GEOID12A
HV9830 NAD 83(2011) X - 1,115,795.966 (meters) COMP
HV9830 NAD 83(2011) Y - -4,840,360.447 (meters) COMP
HV9830 NAD 83(2011) Z - 3,987,471.457 (meters) COMP
HV9830 LAPLACE CORR - -2.38 (seconds) DEFLEC12A
Вы можете видеть, что высота геоида составляет -32 метра. Поэтому, учитывая показания RAW GPS вблизи этой точки, нужно будет применить поправку -32 метра, чтобы рассчитать правильную высоту. (Примечание: поправки отрицательны, так что вы фактически вычли бы отрицательное и, таким образом, сместили показания на 32 метра).
В отличие от Android, мы понимаем, что в отношении coreLocation эта информация Geoid Height автоматически рассчитывается внутри IOS. Мы сталкиваемся с трудностями в том, что мы используем локальную сеть Wi-Fi с датчиком, который рассчитывает неисправленный GPS и собирает как данные внешнего датчика, так и показания coreLocation для GPS. Мне было интересно, знает ли кто-нибудь о библиотеке (C/Objective-C), которая имеет информацию о Geoid и может помочь мне сделать эти вычисления на лету, когда я читаю необработанный сигнал GPS из нашего пакета датчиков.
Спасибо за помощь.
Примечание: Пожалуйста, не предлагайте мне взглянуть на следующее сообщение: Получить высоту по долготе и широте в Android Это хорошее решение, однако у нас нет прямого интернет-соединения, поэтому мы не можем сделать прямой запрос к Goole или USGS.
3 ответа
Я пошел вперед и решил свои проблемы здесь. Что я сделал, так это создал реализацию ObjectiveC AC-кода Fortran, чтобы делать то, что мне нужно. Оригинал c можно найти здесь: http://sourceforge.net/projects/egm96-f477-c/
Вам нужно будет загрузить проект из исходной кузницы, чтобы получить доступ к входным файлам, необходимым для этого кода: CORCOEF и EGM96
Моя цель-c реализация заключается в следующем:
GeoidCalculator.h
#import <Foundation/Foundation.h>
@interface GeoidCalculator : NSObject
+ (GeoidCalculator *)instance;
-(double) getHeightFromLat:(double)lat andLon:(double)lon;
-(double) getCurrentHeightOffset;
-(void) updatePositionWithLatitude:(double)lat andLongitude:(double)lon;
@end
GeoidCalculator.m
#import "GeoidCalculator.h"
#import <stdio.h>
#import <math.h>
#define l_value (65341)
#define _361 (361)
@implementation GeoidCalculator
static int nmax;
static double currentHeight;
static double cc[l_value+ 1], cs[l_value+ 1], hc[l_value+ 1], hs[l_value+ 1],
p[l_value+ 1], sinml[_361+ 1], cosml[_361+ 1], rleg[_361+ 1];
+ (GeoidCalculator *)instance {
static GeoidCalculator *_instance = nil;
@synchronized (self) {
if (_instance == nil) {
_instance = [[self alloc] init];
init_arrays();
currentHeight = -9999;
}
}
return _instance;
}
- (double)getHeightFromLat:(double)lat andLon:(double)lon {
[self updatePositionWithLatitude:lat andLongitude:lon];
return [self getCurrentHeightOffset];
}
- (double)getCurrentHeightOffset {
return currentHeight;
}
- (void)updatePositionWithLatitude:(double)lat andLongitude:(double)lon {
const double rad = 180 / M_PI;
double flat, flon, u;
flat = lat; flon = lon;
/*compute the geocentric latitude,geocentric radius,normal gravity*/
u = undulation(flat / rad, flon / rad, nmax, nmax + 1);
/*u is the geoid undulation from the egm96 potential coefficient model
including the height anomaly to geoid undulation correction term
and a correction term to have the undulations refer to the
wgs84 ellipsoid. the geoid undulation unit is meters.*/
currentHeight = u;
}
double hundu(unsigned nmax, double p[l_value+ 1],
double hc[l_value+ 1], double hs[l_value+ 1],
double sinml[_361+ 1], double cosml[_361+ 1], double gr, double re,
double cc[l_value+ 1], double cs[l_value+ 1]) {/*constants for wgs84(g873);gm in units of m**3/s**2*/
const double gm = .3986004418e15, ae = 6378137.;
double arn, ar, ac, a, b, sum, sumc, sum2, tempc, temp;
int k, n, m;
ar = ae / re;
arn = ar;
ac = a = b = 0;
k = 3;
for (n = 2; n <= nmax; n++) {
arn *= ar;
k++;
sum = p[k] * hc[k];
sumc = p[k] * cc[k];
sum2 = 0;
for (m = 1; m <= n; m++) {
k++;
tempc = cc[k] * cosml[m] + cs[k] * sinml[m];
temp = hc[k] * cosml[m] + hs[k] * sinml[m];
sumc += p[k] * tempc;
sum += p[k] * temp;
}
ac += sumc;
a += sum * arn;
}
ac += cc[1] + p[2] * cc[2] + p[3] * (cc[3] * cosml[1] + cs[3] * sinml[1]);
/*add haco=ac/100 to convert height anomaly on the ellipsoid to the undulation
add -0.53m to make undulation refer to the wgs84 ellipsoid.*/
return a * gm / (gr * re) + ac / 100 - .53;
}
void dscml(double rlon, unsigned nmax, double sinml[_361+ 1], double cosml[_361+ 1]) {
double a, b;
int m;
a = sin(rlon);
b = cos(rlon);
sinml[1] = a;
cosml[1] = b;
sinml[2] = 2 * b * a;
cosml[2] = 2 * b * b - 1;
for (m = 3; m <= nmax; m++) {
sinml[m] = 2 * b * sinml[m - 1] - sinml[m - 2];
cosml[m] = 2 * b * cosml[m - 1] - cosml[m - 2];
}
}
void dhcsin(unsigned nmax, double hc[l_value+ 1], double hs[l_value+ 1]) {
// potential coefficient file
//f_12 = fopen("EGM96", "rb");
NSString* path2 = [[NSBundle mainBundle] pathForResource:@"EGM96" ofType:@""];
FILE* f_12 = fopen(path2.UTF8String, "rb");
if (f_12 == NULL) {
NSLog([path2 stringByAppendingString:@" not found"]);
}
int n, m;
double j2, j4, j6, j8, j10, c, s, ec, es;
/*the even degree zonal coefficients given below were computed for the
wgs84(g873) system of constants and are identical to those values
used in the NIMA gridding procedure. computed using subroutine
grs written by N.K. PAVLIS*/
j2 = 0.108262982131e-2;
j4 = -.237091120053e-05;
j6 = 0.608346498882e-8;
j8 = -0.142681087920e-10;
j10 = 0.121439275882e-13;
m = ((nmax + 1) * (nmax + 2)) / 2;
for (n = 1; n <= m; n++)hc[n] = hs[n] = 0;
while (6 == fscanf(f_12, "%i %i %lf %lf %lf %lf", &n, &m, &c, &s, &ec, &es)) {
if (n > nmax)continue;
n = (n * (n + 1)) / 2 + m + 1;
hc[n] = c;
hs[n] = s;
}
hc[4] += j2 / sqrt(5);
hc[11] += j4 / 3;
hc[22] += j6 / sqrt(13);
hc[37] += j8 / sqrt(17);
hc[56] += j10 / sqrt(21);
fclose(f_12);
}
void legfdn(unsigned m, double theta, double rleg[_361+ 1], unsigned nmx)
/*this subroutine computes all normalized legendre function
in "rleg". order is always
m, and colatitude is always theta (radians). maximum deg
is nmx. all calculations in double precision.
ir must be set to zero before the first call to this sub.
the dimensions of arrays rleg must be at least equal to nmx+1.
Original programmer :Oscar L. Colombo, Dept. of Geodetic Science
the Ohio State University, August 1980
ineiev: I removed the derivatives, for they are never computed here*/
{
static double drts[1301], dirt[1301], cothet, sithet, rlnn[_361+ 1];
static int ir;
int nmx1 = nmx + 1, nmx2p = 2 * nmx + 1, m1 = m + 1, m2 = m + 2, m3 = m + 3, n, n1, n2;
if (!ir) {
ir = 1;
for (n = 1; n <= nmx2p; n++) {
drts[n] = sqrt(n);
dirt[n] = 1 / drts[n];
}
}
cothet = cos(theta);
sithet = sin(theta);
/*compute the legendre functions*/
rlnn[1] = 1;
rlnn[2] = sithet * drts[3];
for (n1 = 3; n1 <= m1; n1++) {
n = n1 - 1;
n2 = 2 * n;
rlnn[n1] = drts[n2 + 1] * dirt[n2] * sithet * rlnn[n];
}
switch (m) {
case 1:
rleg[2] = rlnn[2];
rleg[3] = drts[5] * cothet * rleg[2];
break;
case 0:
rleg[1] = 1;
rleg[2] = cothet * drts[3];
break;
}
rleg[m1] = rlnn[m1];
if (m2 <= nmx1) {
rleg[m2] = drts[m1 * 2 + 1] * cothet * rleg[m1];
if (m3 <= nmx1)
for (n1 = m3; n1 <= nmx1; n1++) {
n = n1 - 1;
if ((!m && n < 2) || (m == 1 && n < 3))continue;
n2 = 2 * n;
rleg[n1] = drts[n2 + 1] * dirt[n + m] * dirt[n - m] *
(drts[n2 - 1] * cothet * rleg[n1 - 1] - drts[n + m - 1] * drts[n - m - 1] * dirt[n2 - 3] * rleg[n1 - 2]);
}
}
}
void radgra(double lat, double lon, double *rlat, double *gr, double *re)
/*this subroutine computes geocentric distance to the point,
the geocentric latitude,and
an approximate value of normal gravity at the point based
the constants of the wgs84(g873) system are used*/
{
const double a = 6378137., e2 = .00669437999013, geqt = 9.7803253359, k = .00193185265246;
double n, t1 = sin(lat) * sin(lat), t2, x, y, z;
n = a / sqrt(1 - e2 * t1);
t2 = n * cos(lat);
x = t2 * cos(lon);
y = t2 * sin(lon);
z = (n * (1 - e2)) * sin(lat);
*re = sqrt(x * x + y * y + z * z);/*compute the geocentric radius*/
*rlat = atan(z / sqrt(x * x + y * y));/*compute the geocentric latitude*/
*gr = geqt * (1 + k * t1) / sqrt(1 - e2 * t1);/*compute normal gravity:units are m/sec**2*/
}
double undulation(double lat, double lon, int nmax, int k) {
double rlat, gr, re;
int i, j, m;
radgra(lat, lon, &rlat, &gr, &re);
rlat = M_PI / 2 - rlat;
for (j = 1; j <= k; j++) {
m = j - 1;
legfdn(m, rlat, rleg, nmax);
for (i = j; i <= k; i++)p[(i - 1) * i / 2 + m + 1] = rleg[i];
}
dscml(lon, nmax, sinml, cosml);
return hundu(nmax, p, hc, hs, sinml, cosml, gr, re, cc, cs);
}
void init_arrays(void) {
int ig, i, n, m;
double t1, t2;
NSString* path1 = [[NSBundle mainBundle] pathForResource:@"CORCOEF" ofType:@""];
//correction coefficient file: modified with 'sed -e"s/D/e/g"' to be read with fscanf
FILE* f_1 = fopen([path1 cStringUsingEncoding:1], "rb");
if (f_1 == NULL) {
NSLog([path1 stringByAppendingString:@" not found"]);
}
nmax = 360;
for (i = 1; i <= l_value; i++)cc[i] = cs[i] = 0;
while (4 == fscanf(f_1, "%i %i %lg %lg", &n, &m, &t1, &t2)) {
ig = (n * (n + 1)) / 2 + m + 1;
cc[ig] = t1;
cs[ig] = t2;
}
/*the correction coefficients are now read in*/
/*the potential coefficients are now read in and the reference
even degree zonal harmonic coefficients removed to degree 6*/
dhcsin(nmax, hc, hs);
fclose(f_1);
}
@end
Я провел ограниченное тестирование с помощью калькулятора высоты геоида ( http://www.unavco.org/community_science/science-support/geoid/geoid.html) и похоже, что все совпадает
ОБНОВЛЕНИЕ iOS8 или Большой
Начиная с IOS8, этот код может работать неправильно. Возможно, вам придется изменить способ загрузки пакета:
[[NSBundle mainBundle] pathForResource:@"EGM96" ofType:@""];
Сделайте поиск в Google или добавьте комментарий здесь.
Впечатляющие вещи Джиф! Я просто использовал ваш код для создания этого sqlite, который может быть проще добавить / использовать в проекте, предполагая, что целочисленная точность для lat/lon достаточно хороша:
Вы можете использовать GeoTrans.
Предоставлено http://earth-info.nga.mil/GandG/geotrans/index.html
Ключевое слово "вертикальные данные". Таким образом, вы хотите конвертировать из WGS84, например, в EGM96. Убедитесь, какую модель Geoid вы хотите использовать. EGM96 является одним из этого.
Возможно, эти ответы помогут и вам: Как рассчитать высоту выше среднего уровня моря
Далее прочитайте текст лицензии ios с открытым исходным кодом: доступно в
Settings -> General -> About -> Legal -> License ...
Там вы получите список всех библиотек, которые использует ios. Один из них, который я нашел, был расчет магнитной децилинации с использованием USGS. Скорее всего, там тоже есть расчет высоты геоида.