STM32 SPI не работает должным образом
Я пытаюсь включить светодиоды на моем MCP23S09 путем записи в регистр GPIO с использованием SPI.
На плате есть две микросхемы, одна для входов, а другая для выходов, поэтому светодиоды.
Я подключил все, как должен, поэтому я выбрал низкий уровень CH2 и подключил вывод MOSI и SCK к своему микроконтроллеру.
Я использую Nucleo STM32F411 в сочетании с программным обеспечением CubeMX, поэтому я пытаюсь отправить данные в регистры для обеспечения функциональности.
Но, к сожалению, ни один из светодиодов не загорелся на моем IO Expander.
Следующим, что я попробовал, был STM32duino, поэтому я могу написать код Arduino для своей платы. Но, насколько я знаю, это просто еще один слой поверх библиотек HAL.
К моему удивлению все заработало! Это тот же кусок кода, я просто немного его изменил, чтобы он работал на Arduino.
Но я до сих пор не понимаю, почему это не работает при использовании библиотек HAL, сгенерированных CubeMX.
Код Arduino:
#include <SPI.h>
#define IODIR 0x00
#define IPOL 0x01
#define GPINTEN 0x02
#define DEFVAL 0x03
#define INTCON 0x04
#define IOCON 0x05
#define GPPU 0x06
#define INTF 0x07
#define INTCAP 0x08
#define GPIO 0x09
#define OLAT 0x0A
#define OPCODEW 0x40
#define OPCODER 0x41
// CS0 -> D2
const int slaveAPin = 2;
// CS1 -> D3
const int slaveBPin = 3;
// LED VAL
const uint8_t value = ~0x3F;
void setup() {
// put your setup code here, to run once:
// initialize SPI:
SPI.begin(); //Initialize the SPI_1 port.
SPI.setBitOrder(MSBFIRST); // Set the SPI_1 bit order
SPI.setDataMode(SPI_MODE0); //Set the SPI_1 data mode 0
SPI.setClockDivider(SPI_CLOCK_DIV64);
pinMode (slaveAPin, OUTPUT); // First chip for inputs
pinMode (slaveBPin, OUTPUT); // Second chip for outputs
digitalWrite (slaveAPin, HIGH);
digitalWrite (slaveBPin, HIGH);
}
void loop() {
// configuration led-io-expander
sendDataSPI(IOCON, 0x20);
// all pins = output
sendDataSPI(IODIR, 0x00);
// Enable LEDS
sendDataSPI(GPIO, value);
}
void sendDataSPI(uint8_t reg, uint8_t value){
digitalWrite (slaveBPin, LOW); // Take slave-select low
SPI.transfer(OPCODEW); // Send the MCP23S09 opcode, and write byte
SPI.transfer(reg); // Send the register we want to write
SPI.transfer(value); // Send the byte
digitalWrite (slaveBPin, HIGH); // Take slave-select high
}
STM32 HAL:
/**
******************************************************************************
* File Name : main.c
* Description : Main program body
******************************************************************************
** This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* USER CODE BEGIN Defines */
#define IODIR 0x00
#define IPOL 0x01
#define GPINTEN 0x02
#define DEFVAL 0x03
#define INTCON 0x04
#define IOCON 0x05
#define GPPU 0x06
#define INTF 0x07
#define INTCAP 0x08
#define GPIO 0x09
#define OLAT 0x0A
#define OPCODEW 0x40
#define OPCODER 0x41
#define SPI_TRANSFER_TIMEOUT 1000
/* USER CODE END Defines */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
void sendDataSPI(uint8_t reg, uint8_t value);
int fgetc(FILE *f);
int fputc(int c, FILE *f);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
int main(void)
{
// LED VAL
uint8_t value = 0x3F;
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
// configuration led-io-expander
sendDataSPI(IOCON, 0x20);
// all pins = output
sendDataSPI(IODIR, 0x00);
// Enable LEDS
sendDataSPI(GPIO, value);
}
/* USER CODE END 3 */
}
// REGISTER, VALUE
void sendDataSPI(uint8_t reg, uint8_t value){
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_RESET); // Take slave-select low
HAL_SPI_Transmit(&hspi1,(uint8_t *)OPCODEW,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the MCP23S09 opcode, and write bit
HAL_SPI_Transmit(&hspi1,(uint8_t *)®,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the register we want to write
HAL_SPI_Transmit(&hspi1,(uint8_t *)&value,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the byte
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_SET); // Take slave-select high
}
int fputc(int c, FILE *f) {
return (HAL_UART_Transmit(&huart2, (uint8_t *)&c,1,HAL_MAX_DELAY));
}
int fgetc(FILE *f) {
char ch;
HAL_UART_Receive(&huart2,(uint8_t*)&ch,1,HAL_MAX_DELAY);
return (ch);
}
/** System Clock Configuration
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
/**Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}
/* SPI1 init function */
static void MX_SPI1_Init(void)
{
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* USART2 init function */
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(CS0_GPIO_Port, CS0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : CS0_Pin */
GPIO_InitStruct.Pin = CS0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CS0_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : CS1_Pin */
GPIO_InitStruct.Pin = CS1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CS1_GPIO_Port, &GPIO_InitStruct);
}
/* USER CODE END 4 */
1 ответ
Вы не ждете завершения передачи SPI перед началом следующей передачи в вашем sendDataSPI
функция. Это должно быть изменено так:
void sendDataSPI(uint8_t reg, uint8_t value){
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_RESET); // Take slave-select low
HAL_SPI_Transmit(&hspi1,(uint8_t *)OPCODEW,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the MCP23S09 opcode, and write bit
while(HAL_SPI_GetState(&hspi1) != HAL_SPI_STATE_READY);
HAL_SPI_Transmit(&hspi1,(uint8_t *)®,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the register we want to write
while(HAL_SPI_GetState(&hspi1) != HAL_SPI_STATE_READY);
HAL_SPI_Transmit(&hspi1,(uint8_t *)&value,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the byte
while(HAL_SPI_GetState(&hspi1) != HAL_SPI_STATE_READY);
HAL_GPIO_WritePin(CS1_GPIO_Port, CS1_Pin, GPIO_PIN_SET); // Take slave-select high
}
Также эта строка просто отправляет мусор, а не 0x40
,
HAL_SPI_Transmit(&hspi1,(uint8_t *)OPCODEW,sizeof(uint8_t),SPI_TRANSFER_TIMEOUT); // Send the MCP23S09 opcode, and write bit
Обратите внимание, что ваши кастинги OPCODEW
к uint8_t*
так что на самом деле вы пройдете 0x40
как указатель (указывающий на некоторую случайную память), а не как данные.