Кубическая сплайн-интерполяция в R
Я пытаюсь реализовать кубический сплайн в R. Я уже использовал функции spline, smooth.spline и smooth.Pspline, которые доступны в библиотеках R, но я не настолько доволен результатами, поэтому хочу убедить себя в том, что согласованность результатов с помощью "самодельной" сплайн-функции. Я уже вычислил коэффициенты для полиномов 3-й степени, но я не уверен, как построить результаты.. они кажутся случайными точками. Вы можете найти исходный код ниже. Любая помощь будет оценена.
x = c(35,36,39,42,45,48)
y = c(2.87671519825595, 4.04868309245341, 3.95202175000174,
3.87683188946186, 4.07739945984612, 2.16064840967985)
n = length(x)
#determine width of intervals
h=0
for (i in 1:(n-1)){
h[i] = (x[i+1] - x[i])
}
A = 0
B = 0
C = 0
D = 0
#determine the matrix influence coefficients for the natural spline
for (i in 2:(n-1)){
j = i-1
D[j] = 2*(h[i-1] + h[i])
A[j] = h[i]
B[j] = h[i-1]
}
#determine the constant matrix C
for (i in 2:(n-1)){
j = i-1
C[j] = 6*((y[i+1] - y[i]) / h[i] - (y[i] - y[i-1]) / h[i-1])
}
#maximum TDMA length
ntdma = n - 2
#tridiagonal matrix algorithm
#upper triangularization
R = 0
for (i in 2:ntdma){
R = B[i]/D[i-1]
D[i] = D[i] - R * A[i-1]
C[i] = C[i] - R * C[i-1]
}
#set the last C
C[ntdma] = C[ntdma] / D[ntdma]
#back substitute
for (i in (ntdma-1):1){
C[i] = (C[i] - A[i] * C[i+1]) / D[i]
}
#end of tdma
#switch from C to S
S = 0
for (i in 2:(n-1)){
j = i - 1
S[i] = C[j]
}
#end conditions
S[1] <- 0 -> S[n]
#Calculate cubic ai,bi,ci and di from S and h
for (i in 1:(n-1)){
A[i] = (S[i+ 1] - S[i]) / (6 * h[i])
B[i] = S[i] / 2
C[i] = (y[i+1] - y[i]) / h[i] - (2 * h[i] * S[i] + h[i] * S[i + 1]) / 6
D[i] = y[i]
}
#control points
xx = c(x[2],x[4])
yy = 0
#spline evaluation
for (j in 1:length(xx)){
for (i in 1:n){
if (xx[j]<=x[i]){
break
}
yy[i] = A[i]*(xx[j] - x[i])^3 + B[i]*(xx[j] - x[i])^2 + C[i]*(xx[j] - x[i]) + D[i]
}
points(x,yy ,col="blue")
}
Спасибо
1 ответ
Хорошо, здесь идет...
Здесь ваши "контрольные точки" - это точки, в которых вы собираетесь оценивать кубический сплайн. Таким образом, количество возвращаемых точек (уу) равно длине хх. Это заставило меня заметить кое-что:
for (j in 1:length(xx)){
for (i in 1:n){
if (xx[j]<=x[i]){
break
}
yy[i] = A[i]*(xx[j] - x[i])^3 + B[i]*(xx[j] - x[i])^2 + C[i]*(xx[j] - x[i]) + D[i]
}
Это только вычисление 'n' значений yy. Привет, что здесь не так? Он должен возвращать значения длины (хх)...
Тогда я думаю, что заметил кое-что еще - ваш "разрыв" выпадет из цикла for. Что вы действительно хотите - это пропустить это i и переходить к следующему, пока не дойдете до того, которое соответствует вашей точке:
#spline evaluation
for (j in 1:length(xx)){
for (i in 1:n){
if (xx[j]<=x[i]){
next
}
yy[j] = A[i]*(xx[j] - x[i])^3 + B[i]*(xx[j] - x[i])^2 + C[i]*(xx[j] - x[i]) + D[i]
}
}
Это неэффективно, потому что вы вычисляете некоторые yy[j] и выкидываете их в следующий раз в цикле, но, независимо от того, оно выполняет свою работу.
Оберните это в функцию, чтобы вы могли легко играть с ней. Моя функция "myspline" принимает x и y для подгонки данных и вектор xx для мест прогнозирования. Я могу сделать:
> xx=seq(35,48,len=100)
> yy = myspline(x,y,xx)
> plot(xx,yy,type="l")
> points(x,y)
>
И я получаю хорошую кривую, проходящую через точки (x, y). За исключением первого пункта, который, кажется, пропущен и сводится к нулю, так что я подозреваю, что где-то все еще есть ошибка. Ну что ж. 99% сделано.
Вот код:
myspline <- function(x,y,xx){
n = length(x)
h=0;yy=0
#determine width of intervals
for (i in 1:(n-1)){
h[i] = (x[i+1] - x[i])
}
A = 0
B = 0
C = 0
D = 0
#determine the matrix influence coefficients for the natural spline
for (i in 2:(n-1)){
j = i-1
D[j] = 2*(h[i-1] + h[i])
A[j] = h[i]
B[j] = h[i-1]
}
#determine the constant matrix C
for (i in 2:(n-1)){
j = i-1
C[j] = 6*((y[i+1] - y[i]) / h[i] - (y[i] - y[i-1]) / h[i-1])
}
#maximum TDMA length
ntdma = n - 2
#tridiagonal matrix algorithm
#upper triangularization
R = 0
for (i in 2:ntdma){
R = B[i]/D[i-1]
D[i] = D[i] - R * A[i-1]
C[i] = C[i] - R * C[i-1]
}
#set the last C
C[ntdma] = C[ntdma] / D[ntdma]
#back substitute
for (i in (ntdma-1):1){
C[i] = (C[i] - A[i] * C[i+1]) / D[i]
}
#end of tdma
#switch from C to S
S = 0
for (i in 2:(n-1)){
j = i - 1
S[i] = C[j]
}
#end conditions
S[1] <- 0 -> S[n]
#Calculate cubic ai,bi,ci and di from S and h
for (i in 1:(n-1)){
A[i] = (S[i+ 1] - S[i]) / (6 * h[i])
B[i] = S[i] / 2
C[i] = (y[i+1] - y[i]) / h[i] - (2 * h[i] * S[i] + h[i] * S[i + 1]) / 6
D[i] = y[i]
}
#control points
#xx = seq(x[2],x[4],len=100)
#spline evaluation
for (j in 1:length(xx)){
for (i in 1:n){
if (xx[j]<=x[i]){
next
}
yy[j] = A[i]*(xx[j] - x[i])^3 + B[i]*(xx[j] - x[i])^2 + C[i]*(xx[j] - x[i]) + D[i]
}
}
return(yy)
}