Где в MQL4 / MQL5-реализации исходного родительского узла дерева C++ AVL возникает проблема?

Я не знаю, где у меня возникла проблема, но я получаю странную ошибку в моей реализации AVL, переведенную на MQL4/MQL5 язык.

В случае неудачи я попадаю в

  • рекурсивно указывая на ту же проблему узла

или же

  • отдельный узел без какого-либо родителя,

таким образом, балансируя, я сталкиваюсь с проблемой нулевого указателя.


Тестовые случаи:

Копия / вставка терминала MetaTrader4/5 [ Journal ] находится ниже

Pass Case:

AVLTree *theAVLTree;
                                                // Create a tree and test case 2
   theAVLTree = new AVLTree();
   Print("-----------------------------------------------");
   Print("TESTING CASE 2");
                                                // Add 50
   Print("Adding Node 50");
   theAVLTree.Insert(theAVLTree.CreateNewNode(50,4));
   theAVLTree.PrintTree();
                                                // Add 20
   Print("Adding Node 20. Ancester's balance factor changes to L");
   theAVLTree.Insert(theAVLTree.CreateNewNode(20,5));
   theAVLTree.PrintTree();
                                               // Add 70
   Print("Adding Node 70 to trigger test of Case 2. Ancester's balance factor changes to =");
   theAVLTree.Insert(theAVLTree.CreateNewNode(70,6));
   theAVLTree.PrintTree();
                                               // Add 90
   Print("Adding Node 90. Ancester's balance factor changes to R.");
   theAVLTree.Insert(theAVLTree.CreateNewNode(90,7));
   theAVLTree.PrintTree();
                                               // Add 15
   Print("Adding Node 15 to trigger test of Case 2. Ancesters balance factor changes to =");
   theAVLTree.Insert(theAVLTree.CreateNewNode(15,8));
   theAVLTree.PrintTree();
   Print("END TESTING CASE 2");
   delete theAVLTree;
   Print("-----------------------------------------------");
   Print("-----------------------------------------------");

Неудачный случай:

AVLTree *theAVLTree;
   //;;;;1.29397;1.29316;1.29259;1.29226;1.29298

   // Test each case by adding some nodes to the tree then
   //  printing the tree after each insertion

// Create a tree and test case 1
   theAVLTree = new AVLTree();

   Print("TESTING CASE 1");
   // Add 50
   Print("Adding Node 1.29567");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29567,0));
   theAVLTree.PrintTree();
   // Add 20
   Print("Adding Node 1.29431 to trigger test of Case 1 to left. Root is ancester.");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29431,1));
   theAVLTree.PrintTree();
   // Add 70
   Print("Adding Node 1.29445");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29445,2));
   theAVLTree.PrintTree();
      // Add 90
   Print("Adding Node 1.29433 to trigger test of Case 1 to right. Root is ancester.");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29433,3));
   theAVLTree.PrintTree();
   Print("END TESTING CASE 1");
   delete theAVLTree;

Это MQL4/MQL5Код, но язык более или менее отражает CPP.

Исходный код для Cpp и заголовочного файла:

#property copyright "Copyright 2016, MetaQuotes Software Corp."
#property link      "https://www.mql5.com"
#property strict

class AVLTreeNode
{
public:
   double value;
   int index;
   // Other data fields can be inserted here
   AVLTreeNode *left;
   AVLTreeNode *right;
   AVLTreeNode *parent;
   char balanceFactor;
};

class AVLTree
{
   private:
      AVLTreeNode   *root;

   public:
      AVLTree();            // Constructor
      ~AVLTree();           // Destructor
      void Insert(AVLTreeNode *n);
      void restoreAVL(AVLTreeNode *&ancestor, AVLTreeNode *&newNode);
      void adjustBalanceFactors(AVLTreeNode *&end, AVLTreeNode *&_start);
      void rotateLeft(AVLTreeNode *&n);
      void rotateRight(AVLTreeNode *&n);
      void adjustLeftRight(AVLTreeNode *&end, AVLTreeNode *&_start);
      void adjustRightLeft(AVLTreeNode *&end, AVLTreeNode *&_start);
      AVLTreeNode* CreateNewNode(double key,int index);
      void PrintTree();
      void FindNearest(double value,AVLTreeNode* &result[]);
   private:
      void ClearTree(AVLTreeNode *&n);
      void Print(AVLTreeNode *&n);
      AVLTreeNode* FindNearestHelper(AVLTreeNode* &pRoot, double value);
};

AVLTree::AVLTree()
{
   root = NULL;   // Initialize root to NULL
}
//------------------------------------------------------------------
// Class destructor
//------------------------------------------------------------------
AVLTree::~AVLTree()
{
   // _start recursive destruction of tree
   ClearTree(root);
}
//------------------------------------------------------------------
// ClearTree()
// Recursively delete all node in the tree.
//------------------------------------------------------------------
void AVLTree::ClearTree(AVLTreeNode *&n)
{
   if(n != NULL)
   {
      ClearTree(n.left);   // Recursively clear the left sub-tree
      ClearTree(n.right);   // Recursively clear the right sub-tree
      delete n;         // Delete this node
   }
}

void AVLTree::Insert(AVLTreeNode *newNode)
{
   AVLTreeNode *temp, *back, *ancestor;

   temp = root;
   back = NULL;
   ancestor = NULL;

   // Check for empty tree first
   if(root == NULL)
   {
      root = newNode;
      return;
   }
   // Tree is not empty so search for place to insert
   while(temp != NULL) // Loop till temp falls out of the tree 
   {
      back = temp;
      // Mark ancestor that will be out of balance after
      //   this node is inserted
      if(temp.balanceFactor != '=')  
         ancestor = temp;
      if(newNode.value < temp.value)
         temp = temp.left;
      else
         temp = temp.right;
   }
   // temp is now NULL
   // back points to parent node to attach newNode to
   // ancestor points to most recent out of balance ancestor

   newNode.parent = back;   // Set parent
   if(newNode.value < back.value)  // Insert at left
   {
      back.left = newNode;
   }
   else     // Insert at right
   {
      back.right = newNode;
   }

   // Now call function to restore the tree's AVL property
   restoreAVL(ancestor, newNode);
}

//------------------------------------------------------------------
// restoreAVL() 
// Restore the AVL quality after inserting a new node.
// @param ancestor – most recent node back up the tree that is
//            now out of balance.
// @param newNode– the newly inserted node.
//------------------------------------------------------------------
void AVLTree::restoreAVL(AVLTreeNode *&ancestor, AVLTreeNode *&newNode)
{
   //--------------------------------------------------------------------------------
   // Case 1: ancestor is NULL, i.e. balanceFactor of all ancestors' is '='
   //--------------------------------------------------------------------------------
   if(ancestor == NULL)
   {
      if(newNode.value < root.value)       // newNode inserted to left of root
         root.balanceFactor = 'L';
      else 
         root.balanceFactor = 'R';   // newNode inserted to right of root
      // Adjust the balanceFactor for all nodes from newNode back up to root
      adjustBalanceFactors(root, newNode);
   }

   //--------------------------------------------------------------------------------
   // Case 2: Insertion in opposite subtree of ancestor's balance factor, i.e.
   //  ancestor.balanceFactor = 'L' AND  Insertion made in ancestor's right subtree
   //     OR
   //  ancestor.balanceFactor = 'R' AND  Insertion made in ancestor's left subtree
   //--------------------------------------------------------------------------------
   else if(((ancestor.balanceFactor == 'L') && (newNode.value > ancestor.value)) ||
        ((ancestor.balanceFactor == 'R') && (newNode.value < ancestor.value)))
   {
      ancestor.balanceFactor = '=';
      // Adjust the balanceFactor for all nodes from newNode back up to ancestor
      adjustBalanceFactors(ancestor, newNode);
   }
   //--------------------------------------------------------------------------------
   // Case 3: ancestor.balanceFactor = 'R' and the node inserted is
   //      in the right subtree of ancestor's right child
   //--------------------------------------------------------------------------------
   else if((ancestor.balanceFactor == 'R') && (newNode.value > ancestor.right.value))
   {
      ancestor.balanceFactor = '='; // Reset ancestor's balanceFactor
      rotateLeft(ancestor);       // Do single left rotation about ancestor
      // Adjust the balanceFactor for all nodes from newNode back up to ancestor's parent
      adjustBalanceFactors(ancestor.parent, newNode);
   }

   //--------------------------------------------------------------------------------
   // Case 4: ancestor.balanceFactor is 'L' and the node inserted is
   //      in the left subtree of ancestor's left child
   //--------------------------------------------------------------------------------
   else if((ancestor.balanceFactor == 'L') && (newNode.value < ancestor.left.value))
   {
      ancestor.balanceFactor = '='; // Reset ancestor's balanceFactor
      rotateRight(ancestor);       // Do single right rotation about ancestor
      // Adjust the balanceFactor for all nodes from newNode back up to ancestor's parent
      adjustBalanceFactors(ancestor.parent, newNode);
   }

   //--------------------------------------------------------------------------------
   // Case 5: ancestor.balanceFactor is 'L' and the node inserted is
   //      in the right subtree of ancestor's left child
   //--------------------------------------------------------------------------------
   else if((ancestor.balanceFactor == 'L') && (newNode.value > ancestor.left.value))
   {
      // Perform double right rotation (actually a left followed by a right)
      rotateLeft(ancestor.left);
      rotateRight(ancestor);
      // Adjust the balanceFactor for all nodes from newNode back up to ancestor
      adjustLeftRight(ancestor, newNode);
   }

   //--------------------------------------------------------------------------------
   // Case 6: ancestor.balanceFactor is 'R' and the node inserted is 
   //      in the left subtree of ancestor's right child
   //--------------------------------------------------------------------------------
   else
   {
      // Perform double left rotation (actually a right followed by a left)
          rotateRight(ancestor.right);
          rotateLeft(ancestor);
          adjustRightLeft(ancestor, newNode);
   }
}

//------------------------------------------------------------------
// Adjust the balance factor in all nodes from the inserted node's
//   parent back up to but NOT including a designated end node.
// @param end– last node back up the tree that needs adjusting
// @param _start – node just inserted 
//------------------------------------------------------------------
void AVLTree::adjustBalanceFactors(AVLTreeNode *&end, AVLTreeNode *&_start)
{
    AVLTreeNode *temp = _start.parent; // Set _starting point at _start's parent
    while(temp != end)
    {
        if(_start.value < temp.value)
            temp.balanceFactor = 'L';
        else
            temp.balanceFactor = 'R';
        temp = temp.parent;
    } // end while
}

//------------------------------------------------------------------
// rotateLeft()
// Perform a single rotation left about n.  This will rotate n's
//   parent to become n's left child.  Then n's left child will
//   become the former parent's right child.
//------------------------------------------------------------------
void AVLTree::rotateLeft(AVLTreeNode *&n)
{
   AVLTreeNode *temp = n.right;   //Hold pointer to n's right child
   n.right = temp.left;      // Move temp 's left child to right child of n
   if(temp.left != NULL)      // If the left child does exist
      temp .left.parent = n;// Reset the left child's parent
   if(n.parent == NULL)       // If n was the root
   {
      root = temp;      // Make temp the new root
      temp.parent = NULL;   // Root has no parent
   }
   else if(n.parent.left == n) // If n was the left child of its' parent
      n.parent.left = temp;   // Make temp the new left child
   else               // If n was the right child of its' parent
      n.parent.right = temp;// Make temp the new right child
   if(temp!=n)
   {
    temp.left = n;               // Move n to left child of temp
    n.parent = temp;             // Reset n's parent
   }         

}

//------------------------------------------------------------------
// rotateRight()
// Perform a single rotation right about n.  This will rotate n's
//   parent to become n's right child.  Then n's right child will
//   become the former parent's left child.
//------------------------------------------------------------------
void AVLTree::rotateRight(AVLTreeNode *&n)
{
   AVLTreeNode *temp = n.left; //Hold pointer to temp
   n.left = temp.right;        // Move temp's right child to left child of n
   if(temp.right != NULL)      // If the right child does exist
      temp.right.parent = n;   // Reset right child's parent
   if(n.parent == NULL)        // If n was root
   {
      root = temp;             // Make temp the root
      temp.parent = NULL;      // Root has no parent
   }
   else if(n.parent.left == n) // If was the left child of its' parent
      n.parent.left = temp;    // Make temp the new left child
   else                        // If n was the right child of its' parent
      n.parent.right = temp;   // Make temp the new right child

   temp.right = n;             // Move n to right child of temp
   n.parent = temp;            // Reset n's parent
}

//------------------------------------------------------------------
// adjustLeftRight()
// @param end- last node back up the tree that needs adjusting
// @param _start - node just inserted 
//------------------------------------------------------------------
void AVLTree::adjustLeftRight(AVLTreeNode *&end, AVLTreeNode *&_start)
{
    if(end == root)
        end.balanceFactor = '=';
    else if(_start.value < end.parent.value)
    {
        end.balanceFactor = 'R';
        adjustBalanceFactors(end.parent.left, _start);
    }
    else
    {
        end.balanceFactor = '=';
        end.parent.left.balanceFactor = 'L';
        adjustBalanceFactors(end, _start);
    }
}

//------------------------------------------------------------------
// adjustRightLeft
// @param end- last node back up the tree that needs adjusting
// @param _start - node just inserted 
//------------------------------------------------------------------
void AVLTree::adjustRightLeft(AVLTreeNode *&end, AVLTreeNode *&_start)
{
    if(end == root)
        end.balanceFactor = '=';
    else if(_start.value > end.parent.value)
    {
        end.balanceFactor = 'L';
        adjustBalanceFactors(end.parent.right, _start);
    }
    else
    {
        end.balanceFactor = '=';
        end.parent.right.balanceFactor = 'R';
        adjustBalanceFactors(end, _start);
    }
}

//------------------------------------------------------------------
// PrintTree()
// Intiate a recursive traversal to print the tree
//------------------------------------------------------------------
void AVLTree::PrintTree()
{
   Print("Printing the tree...");
   Print("Root Node: "+ string(root.value) +"  balanceFactor is "+string(root.balanceFactor));
   Print(root);
}

//------------------------------------------------------------------
// Print()
// Perform a recursive traversal to print the tree
//------------------------------------------------------------------
void AVLTree::Print(AVLTreeNode *&n)
{
   if(n != NULL)
   {
      Print("Node: "+ string(n.value) + " balanceFactor is "+ string(n.balanceFactor) + "");
      if(n.left != NULL)
      {
         Print(" moving left");
         Print(n.left);
         Print("Returning to Node"+ string(n.value) + " from its' left subtree");
      }
      else
      {
         Print(" left subtree is empty");
      }
      Print("Node: "+ string(n.value) + " balanceFactor is "+ string(n.balanceFactor) + "");
      if(n.right != NULL)
      {
         Print(" moving right");
         Print(n.right);
         Print("Returning to Node "+ string(n.value) + " from its' right subtree");
      }
      else
      {
         Print(" right subtree is empty");
      }
   }
}

AVLTreeNode* AVLTree::FindNearestHelper(AVLTreeNode* &pRoot, double value)
{
    AVLTreeNode* pClosest = NULL;
    double minDistance = 1.7976931348623159*MathPow(10,308); // = DBL_MAX; // SYSTEM CONST
    AVLTreeNode* pNode = pRoot;

    while(pNode != NULL){
        double distance = MathAbs(pNode.value - value);
        if(distance < minDistance){
            minDistance = distance;
            pClosest    = pNode;
        }

        if(distance == 0)
            break;

        if(pNode.value > value)
            pNode = pNode.left;
        else if(pNode.value < value)
            pNode = pNode.right;
    }

    return pClosest;
}

 void AVLTree::FindNearest(double value,AVLTreeNode* &result[])
 {
    AVLTreeNode* nearest= FindNearestHelper(root,value);
    if(nearest!=NULL)
    {
      int rSize=0;
      rSize=rSize+1;
      ArrayResize(result,rSize);
      result[rSize-1]=nearest;
      AVLTreeNode* nParent=nearest.parent;
      AVLTreeNode* nLeft=nearest.left;
      AVLTreeNode* nRight=nearest.right;

      if(nearest.value>value)
      {
         if(nLeft!=NULL) nearest=nLeft;
         else nearest=nParent;
      }
      else
      {
         if(nRight!=NULL)nearest=nRight;
         else nearest=nParent;
      }
      if(nearest!=NULL)
      {
       rSize=rSize+1;
       ArrayResize(result,rSize);
       result[rSize-1]=nearest;
      }
    }
 }
   //---------------------------------------------
// Create a new tree node with the given key
//---------------------------------------------
AVLTreeNode* AVLTree::CreateNewNode(double key,int ind)
{
   AVLTreeNode *temp = new AVLTreeNode();
   temp.index         = ind;
   temp.value         = key;
   temp.left          = NULL;
   temp.right         = NULL;
   temp.parent        = NULL;
   temp.balanceFactor = '=';
   return temp;
}

Более подробная информация в соответствии с запросом: Test MQL Script:

//+------------------------------------------------------------------+
//|                                                    StackHelp.mq4 |
//|                        Copyright 2016, MetaQuotes Software Corp. |
//|                                             https://www.mql5.com |
//+------------------------------------------------------------------+
#property copyright "Copyright 2016, MetaQuotes Software Corp."
#property link      "https://www.mql5.com"
#property version   "1.00"
#property strict

#include <Custom\AVLTree.mqh>

//+
//+------------------------------------------------------------------+
//| Script program start function                                    |
//+------------------------------------------------------------------+
void OnStart()
  {
//---
   AVLTree *theAVLTree;
   theAVLTree = new AVLTree();

   Print("TESTING CASE 1");
   // Add 1.29567
   Print("Adding Node 1.29567");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29567,0));
   theAVLTree.PrintTree();
   // Add 1.29431
   Print("Adding Node 1.29431 to trigger test of Case 1 to left. Root is ancester.");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29431,1));
   theAVLTree.PrintTree();
   // Add 1.29445
   Print("Adding Node 1.29445");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29445,2));
   theAVLTree.PrintTree();
      // Add 1.2943
   Print("Adding Node 1.29433 to trigger test of Case 1 to right. Root is ancester.");
   theAVLTree.Insert(theAVLTree.CreateNewNode(1.29433,3));
   theAVLTree.PrintTree();
   Print("END TESTING CASE 1");
   delete theAVLTree;
   Print("END TESTING CASE 1");

   delete theAVLTree;
  }

Терминальный выход: введите описание изображения здесь

1 ответ

Мой подозреваемый - асимметрия в :rotateLeft() против :rotateRight() класс-метода.

Первый содержит избегание сингулярности / циркулярных ссылок, второй - нет.

void AVLTree::rotateLeft( AVLTreeNode *&n )
{
   AVLTreeNode *temp = n.right;         // Hold pointer to n's right child
             n.right = temp.left;       // Move temp 's left child to right child of n

   if (  temp.left != NULL )            // If the left child does exist
         temp.left.parent = n;          //    Reset the left child's parent

   if (  n.parent == NULL )             // If n was the root
   {     root        = temp;            //    Make temp the new root
         temp.parent = NULL;            //    Root has no parent
   }
   else if (  n.parent.left == n )      // If n was the left child of its' parent
              n.parent.left  = temp;    //    Make temp the new left child
   else                                 // If n was the right child of its' parent
              n.parent.right = temp;    //    Make temp the new right child

   if (  temp != n )                    // If !n ( avoid ( n.parent == n ) + ( n.left == n ) singularities / circulars )
   {
         temp.left = n;                 //    Move n to left child of temp
         n.parent  = temp;              //    Reset n's parent
   }
}

+ несколько крошечных деталей, прокомментированных ниже:

#property copyright "Copyright 2016, VyshuRam, VOLVO.COM"
#property link      "https://www.volvo.com"
#property strict

class AVLTreeNode
{
   public:
      double       value;
      int          index;
   // ---------------------------------- // Other data fields can be inserted here
      AVLTreeNode* left;
      AVLTreeNode* right;
      AVLTreeNode* parent;
      char         balanceFactor;
};

class AVLTree
{
   private:
      AVLTreeNode* root;

   public:
      AVLTree();                      // Constructor
     ~AVLTree();                      // Destructor

      void         Insert(               AVLTreeNode*  n );
      void         restoreAVL(           AVLTreeNode* &ancestor,
                                         AVLTreeNode* &newNode
                                         );
      void         adjustBalanceFactors( AVLTreeNode* &end,
                                         AVLTreeNode* &_start
                                         );
      void         rotateLeft(           AVLTreeNode* &n );
      void         rotateRight(          AVLTreeNode* &n );
      void         adjustLeftRight(      AVLTreeNode* &end,
                                         AVLTreeNode* &_start
                                         );
      void         adjustRightLeft(      AVLTreeNode* &end,
                                         AVLTreeNode* &_start
                                         );
      AVLTreeNode* CreateNewNode(        double        key,
                                         int           index );
      void         PrintTree();          
      void         FindNearest(          double        value,
                                         AVLTreeNode* &result[]
                                         );
   private:
      void         ClearTree(            AVLTreeNode* &n );
      void         Print(                AVLTreeNode* &n );
      AVLTreeNode* FindNearestHelper(    AVLTreeNode* &pRoot,
                                         double        value
                                         );
};

AVLTree::AVLTree()
{
   root = NULL;                     // Initialize root to NULL
}

//------------------------------------------------------------------
// Class destructor
//------------------------------------------------------------------
AVLTree::~AVLTree()
{
   ClearTree( root );               // start recursive destruction of tree
}

//------------------------------------------------------------------
// ClearTree()
// Recursively delete all node in the tree.
//------------------------------------------------------------------
void AVLTree::ClearTree( AVLTreeNode *&n )
{
   if (  n != NULL )
   {     
         ClearTree( n.left );   // Recursively clear the left sub-tree
         ClearTree( n.right );  // Recursively clear the right sub-tree
         delete n;              // Delete this node
   }
}

void AVLTree::Insert( AVLTreeNode *newNode )
{
   AVLTreeNode *temp, *back, *ancestor;

   temp     = root;
   back     = NULL;
   ancestor = NULL;

   if (  root == NULL )         // Check for empty tree first
   {
         root  = newNode;
         return;
   }
   //                           // Tree is not empty so search for place to insert
   while (  temp != NULL )      // Loop till temp falls out of the tree 
   {
            back = temp;        // begins with temp == root
            // Mark ancestor that will be out of balance after this node is inserted
            if (  temp.balanceFactor != '=' )  ancestor = temp;
            if (  newNode.value < temp.value ) temp     = temp.left;
            else                               temp     = temp.right;
   }
   // temp     is now NULL ( while(){..}-terminated )
   // back     points to parent node to attach a newNode to
   // ancestor points to most recent out of balance ancestor

   newNode.parent = back;               // Set parent
   if (  newNode.value < back.value )   // Insert at left
   {
         back.left  = newNode;
   }
   else                                 // Insert at right
   {
         back.right = newNode;
   }
   // Now call function to restore the tree's AVL property
   restoreAVL( ancestor, newNode );
}

//------------------------------------------------------------------
// restoreAVL() 
// Restore the AVL quality after inserting a new node.
// @param ancestor – most recent node back up the tree that is
//            now out of balance.
// @param newNode– the newly inserted node.
//------------------------------------------------------------------
void AVLTree::restoreAVL( AVLTreeNode *&ancestor, AVLTreeNode *&newNode )
{
   //--------------------------------------------------------------------------------
   // Case 1: ancestor is NULL, i.e. balanceFactor of all ancestors' is '='
   //--------------------------------------------------------------------------------
   if (  ancestor == NULL )
   {     
         if (  newNode.value <  root.value )
               root.balanceFactor = 'L';        // newNode inserted to left of root
         else  root.balanceFactor = 'R';        // newNode inserted to right of root

         adjustBalanceFactors( root,            // Adjust the balanceFactor
                               newNode          // for all nodes
                               );               // from newNode back up to root    
   }

   //--------------------------------------------------------------------------------
   // Case 2: Insertion in opposite subtree of ancestor's balance factor, i.e.
   //  ancestor.balanceFactor = 'L' AND  Insertion made in ancestor's right subtree
   //     OR
   //  ancestor.balanceFactor = 'R' AND  Insertion made in ancestor's left subtree
   //--------------------------------------------------------------------------------
   else if (  (  ( ancestor.balanceFactor == 'L'  )
              && ( ancestor.value         <  newNode.value )
              )
           || (  ( ancestor.balanceFactor == 'R'  )
              && ( ancestor.value         >  newNode.value )
              )
           )
        {
              ancestor.balanceFactor = '=';

              adjustBalanceFactors( ancestor,   // Adjust the balanceFactor
                                    newNode     // for all nodes
                                    );          // from newNode back up to ancestor
        }
   //--------------------------------------------------------------------------------
   // Case 3: ancestor.balanceFactor = 'R' and the node inserted is
   //      in the right subtree of ancestor's right child
   //--------------------------------------------------------------------------------
   else if (  ( ancestor.balanceFactor == 'R' )
           && ( ancestor.right.value   <  newNode.value )
           )
        {
              ancestor.balanceFactor = '=';     // Reset ancestor's balanceFactor
              rotateLeft( ancestor );           // Do single left rotation about ancestor

              adjustBalanceFactors( ancestor.parent, // Adjust the balanceFactor
                                    newNode          // for all nodes
                                    );               // from newNode back up to ancestor's parent
        }

   //--------------------------------------------------------------------------------
   // Case 4: ancestor.balanceFactor is 'L' and the node inserted is
   //      in the left subtree of ancestor's left child
   //--------------------------------------------------------------------------------
   else if (  ( ancestor.balanceFactor == 'L' )
           && ( ancestor.left.value    >  newNode.value )
           )
        {
              ancestor.balanceFactor = '=';     // Reset ancestor's balanceFactor
              rotateRight( ancestor );          // Do single right rotation about ancestor

              adjustBalanceFactors( ancestor.parent, // Adjust the balanceFactor
                                    newNode          // for all nodes
                                    );               // from newNode back up to ancestor's parent
        }

   //--------------------------------------------------------------------------------
   // Case 5: ancestor.balanceFactor is 'L' and the node inserted is
   //      in the right subtree of ancestor's left child
   //--------------------------------------------------------------------------------
   else if (  ( ancestor.balanceFactor == 'L' )
           && ( ancestor.left.value    <  newNode.value )
           )
        {
              rotateLeft(  ancestor.left );     // Perform double right rotation
              rotateRight( ancestor );          // (actually a left followed by a right)

              adjustLeftRight( ancestor,        // Adjust the balanceFactor
                               newNode          // for all nodes
                               );               // from newNode back up to ancestor
        }

   //--------------------------------------------------------------------------------
   // Case 6: ancestor.balanceFactor is 'R' and the node inserted is 
   //      in the left subtree of ancestor's right child
   //--------------------------------------------------------------------------------
   else
   {
        rotateRight( ancestor.right );          // Perform double left rotation
        rotateLeft(  ancestor );                // (actually a right followed by a left)

        adjustRightLeft( ancestor,              // Adjust the balanceFactor
                         newNode                // for all nodes
                         );                     // from newNode back up to ancestor
   }
}

//------------------------------------------------------------------
// Adjust the balance factor in all nodes from the inserted node's
//   parent back up to but NOT including a designated end node.
// @param end– last node back up the tree that needs adjusting
// @param _start – node just inserted 
//------------------------------------------------------------------
void AVLTree::adjustBalanceFactors( AVLTreeNode *&end, AVLTreeNode *&_start )
{
    AVLTreeNode *temp = _start.parent; // Set _starting point at _start's parent

    while (  temp != end )
    {
             if (  _start.value < temp.value ) temp.balanceFactor = 'L';
             else                              temp.balanceFactor = 'R';
             temp = temp.parent;
    } // end while
}

//------------------------------------------------------------------
// rotateLeft()
// Perform a single rotation left about n.  This will rotate n's
//   parent to become n's left child.  Then n's left child will
//   become the former parent's right child.
//------------------------------------------------------------------
void AVLTree::rotateLeft( AVLTreeNode *&n )
{
   AVLTreeNode *temp = n.right;         // Hold pointer to n's right child
             n.right = temp.left;       // Move temp 's left child to right child of n

   if (  temp.left != NULL )            // If the left child does exist
         temp.left.parent = n;          //    Reset the left child's parent

   if (  n.parent == NULL )             // If n was the root
   {     root        = temp;            //    Make temp the new root
         temp.parent = NULL;            //    Root has no parent
   }
   else if (  n.parent.left == n )      // If n was the left child of its' parent
              n.parent.left  = temp;    //    Make temp the new left child
   else                                 // If n was the right child of its' parent
              n.parent.right = temp;    //    Make temp the new right child

   if (  temp != n )                    // If !n ( avoid ( n.parent == n ) + ( n.left == n ) singularities / circulars )
   {
         temp.left = n;                 //    Move n to left child of temp
         n.parent  = temp;              //    Reset n's parent
   }
}

//------------------------------------------------------------------
// rotateRight()
// Perform a single rotation right about n.  This will rotate n's
//   parent to become n's right child.  Then n's right child will
//   become the former parent's left child.
//------------------------------------------------------------------
void AVLTree::rotateRight( AVLTreeNode *&n )
{
   AVLTreeNode *temp = n.left;          // Hold pointer to temp
   n.left            = temp.right;      // Move temp's right child to left child of n
   if (  temp.right != NULL )           // If the right child does exist
         temp.right.parent = n;           //    Reset right child's parent
   if (  n.parent == NULL )             // If n was root
   {     root        = temp;            //    Make temp the root
         temp.parent = NULL;            //    Root has no parent
   }
   else if (  n.parent.left == n )      // If was the left child of its' parent
              n.parent.left  = temp;    //    Make temp the new left child
   else                                 // If n was the right child of its' parent
              n.parent.right = temp;    //    Make temp the new right child

   temp.right = n;                      // Move n to right child of temp
   n.parent   = temp;                   // Reset n's parent
}

//------------------------------------------------------------------
// adjustLeftRight()
// @param end- last node back up the tree that needs adjusting
// @param _start - node just inserted 
//------------------------------------------------------------------
void AVLTree::adjustLeftRight( AVLTreeNode *&end,
                               AVLTreeNode *&_start
                               )
{
    if (  end == root )
          end.balanceFactor = '=';
    else if (  _start.value < end.parent.value )
         {
               end.balanceFactor = 'R';
               adjustBalanceFactors( end.parent.left, _start );
         }
    else
    {
        end.balanceFactor             = '=';
        end.parent.left.balanceFactor = 'L';
        adjustBalanceFactors( end, _start );
    }
}

//------------------------------------------------------------------
// adjustRightLeft
// @param end- last node back up the tree that needs adjusting
// @param _start - node just inserted 
//------------------------------------------------------------------
void AVLTree::adjustRightLeft( AVLTreeNode *&end,
                               AVLTreeNode *&_start
                               )
{
    if (  end == root )
          end.balanceFactor = '=';
    else if (  _start.value > end.parent.value )
         {
              end.balanceFactor = 'L';
              adjustBalanceFactors( end.parent.right, _start );
         }
    else
    {
         end.balanceFactor              = '=';
         end.parent.right.balanceFactor = 'R';
         adjustBalanceFactors( end, _start );
    }
}

//------------------------------------------------------------------
// PrintTree()
// Intiate a recursive traversal to print the tree
//------------------------------------------------------------------
void AVLTree::PrintTree()
{
   Print( "Printing the tree..." );
   Print( "Root Node: " + string( root.value ) +"  balanceFactor is " + string( root.balanceFactor ) );
   Print( root );
}

//------------------------------------------------------------------
// Print()
// Perform a recursive traversal to print the tree
//------------------------------------------------------------------
void AVLTree::Print( AVLTreeNode *&n )
{
   if (  n != NULL )
   {
         Print( "Node: " + string( n.value ) + " balanceFactor is "+ string( n.balanceFactor ) + "" );
         if (  n.left != NULL )
         {
               Print( " moving left" );
               Print( n.left );
               Print( "Returning to Node" + string( n.value ) + " from its' left subtree" );
         }
         else
         {
              Print( " left subtree is empty" );
         }
         Print( "Node: " + string( n.value ) + " balanceFactor is " + string( n.balanceFactor ) + "" );
         if (  n.right != NULL )
         {
               Print( " moving right" );
               Print( n.right );
               Print( "Returning to Node " + string( n.value ) + " from its' right subtree" );
         }
         else
         {
               Print( " right subtree is empty" );
         }
   }
}

AVLTreeNode* AVLTree::FindNearestHelper( AVLTreeNode* &pRoot, double value )
{
    AVLTreeNode* pClosest = NULL;
    double minDistance = 1.7976931348623159 * MathPow( 10, 308 ); // = DBL_MAX; // SYSTEM CONST
    AVLTreeNode* pNode = pRoot;

    while (  pNode != NULL ){
             double               distance = MathAbs( pNode.value - value );
             if (  minDistance >  distance ){
                   minDistance  = distance;
                   pClosest     = pNode;
             }
             if (  distance == 0 ) break;
             if (       pNode.value >  value ) pNode = pNode.left;
             else if (  pNode.value <  value ) pNode = pNode.right;
    }
    return pClosest;
}

void AVLTree::FindNearest( double value, AVLTreeNode* &result[] )
{
   AVLTreeNode* nearest= FindNearestHelper( root, value );
   if (  nearest != NULL )
   {
      int rSize          = 0;           // ?| rSize = 1; ...........
      rSize              = rSize + 1;   // ?|
      ArrayResize( result, rSize );

      result[rSize-1]      = nearest;
      AVLTreeNode* nParent = nearest.parent;
      AVLTreeNode* nLeft   = nearest.left;
      AVLTreeNode* nRight  = nearest.right;

      if (  nearest.value > value )
      {
         if (  nLeft  != NULL ) nearest = nLeft;
         else                   nearest = nParent;
      }
      else
      {
         if (  nRight != NULL ) nearest = nRight;
         else                   nearest = nParent;
      }
      if (  nearest != NULL )
      {
         rSize = rSize + 1;
         ArrayResize( result, rSize );
         result[rSize-1] = nearest;
      }
   }
}

//---------------------------------------------
// Create a new tree node with the given key
//---------------------------------------------
AVLTreeNode* AVLTree::CreateNewNode( double key,int ind )
{
   AVLTreeNode *temp = new AVLTreeNode();
   temp.index         = ind;
   temp.value         = key;
   temp.left          = NULL;
   temp.right         = NULL;
   temp.parent        = NULL;
   temp.balanceFactor = '=';
   return temp;
}
Другие вопросы по тегам