Рефакторинг алгоритм как выражение вычисления?
Этот вопрос содержит спойлеры для тех, кто не выполнил задачу 61 Project Euler. Я написал ответ на проблему, которая была обязательной, поэтому я решил сделать более общий и функциональный ответ. Мне это удалось, но сейчас я пытаюсь выяснить, как изменить его или использовать выражения для вычислений, и я безнадежно запутался. Эта проблема подробно описана ниже, но суть в том, что вы пытаетесь создать цепочку чисел, которая при расположении по порядку демонстрирует свойство для всех соседних пар. Каждый из кандидатов в цепочку происходит из разного пула чисел, что означает, что алгоритм грубой силы должен быть умным, чтобы избежать необходимости искать каждую возможную перестановку.
Я полагаю, что включение выражений вычислений должно было бы каким-то образом превратить алгоритм поиска в монаду, где он продолжает добавлять к решению или выводить пустой список. Но я не совсем уверен.
(*
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are
all figurate (polygonal) numbers and are generated by the following formulae:
Triangle P3,n=n(n+1)/2 1, 3, 6, 10, 15, ...
Square P4,n=n2 1, 4, 9, 16, 25, ...
Pentagonal P5,n=n(3n−1)/2 1, 5, 12, 22, 35, ...
Hexagonal P6,n=n(2n−1) 1, 6, 15, 28, 45, ...
Heptagonal P7,n=n(5n−3)/2 1, 7, 18, 34, 55, ...
Octagonal P8,n=n(3n−2) 1, 8, 21, 40, 65, ...
The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three
interesting properties.
The set is cyclic, in that the last two digits of each number is the first two
digits of the next number (including the last number with the first).
Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal
(P5,44=2882), is represented by a different number in the set.
This is the only set of 4-digit numbers with this property.
Find the sum of the only ordered set of six cyclic 4-digit numbers for which
each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and
octagonal, is represented by a different number in the set.
*)
let rec distribute e = function
| [] -> [[e]]
| x::xs' as xs -> (e::xs)::[for xs in distribute e xs' -> x::xs]
// Return a list of all permutations of a list
let rec permute = function
| [] -> [[]]
| e::xs -> List.collect (distribute e) (permute xs)
// Return a list rotated until it's minimum element is the head
let canonicalCyclicPermutation (permutationList : 'a list) =
let min = Seq.min permutationList
let rec loop ourList =
match ourList with
| head :: tail when head = min -> ourList
| head :: tail -> loop (tail @ [head])
loop permutationList
// Return a list of all permutations of a list that is rotationally/cylically unique
let permutateCycUniq seedList =
permute seedList
|> List.distinctBy canonicalCyclicPermutation
// Generate a sequence of all s-gonal numbers
let polygonalGenerator s =
Seq.initInfinite (fun idx -> ((pown (idx+1) 2) * (s-2) - (idx+1)*(s-4))/2)
// Generate a sequence of s-gonal numbers relevant for our exercise
let polygonalCandidates s =
s
|> polygonalGenerator
|> Seq.skipWhile (fun x -> x <= 999)
|> Seq.takeWhile (fun x -> x <= 9999)
|> Seq.cache
// Create the polygonal numbers as a list not seq
let polygonalCandidatesL s =
polygonalCandidates s
|> Seq.toList
// Returns true if the last digits of first input are first digits in last input
let sharesDigits xxvv vvyy =
(xxvv / 100) = (vvyy % 100)
// Returns true if a sequence is cyclical
let isCyclical intSeq =
(Seq.append intSeq (Seq.take 1 intSeq))
|> Seq.pairwise
|> Seq.fold (fun acc (num1,num2) -> acc && (sharesDigits num1 num2)) true
// Returns an empty list if the candidate number does not share digits
// with the list head, otherwise returns the list with the candidate at the head
let addCandidateToSolution (solution : int list) (number : int) =
match solution with
| (head::tail) when sharesDigits number head -> number::head::tail
| _ -> []
// Returns a sequence of all valid solutions generated by trying to add
// a sequence of candidates to all solutions in a sequence
let addCandidatesToSolution (solutions : int list seq) (candidates : int seq) =
Seq.collect (fun solution ->
Seq.map (fun candidate ->
addCandidateToSolution solution candidate)
candidates
|> Seq.filter (not << List.isEmpty))
solutions
// Given a list of side lengths, we return a sequence of cyclical solutions
// from the polygonal number families in the order they appear in the list
let generateSolutionsFromPolygonalFamilies (seedList : int list) =
let solutionSeeds =
seedList
|> List.head
|> polygonalCandidates
|> Seq.map (fun x -> [x])
let solutions =
Seq.fold (fun acc elem -> (addCandidatesToSolution acc elem))
solutionSeeds
((List.tail seedList) |> List.map polygonalCandidatesL)
|> Seq.filter isCyclical
solutions
// Find all cyclical sequences from a list of polygonal number families
let FindSolutionsFromFamilies intList =
intList
|> permutateCycUniq
|> Seq.collect generateSolutionsFromPolygonalFamilies
|> Seq.toList
// Given in the problem
let sampleAnswer = FindSolutionsFromFamilies [3;4;5]
// The set of answers that answers the problem
#time
let problemAnswer = FindSolutionsFromFamilies [3 .. 8]
#time // 0.09s wow!
1 ответ
Поначалу, будучи скептиком, я должен признать, что размышления, стоящие за этим вопросом, вполне обоснованы, в то время как фактическая реализация кажется довольно неуловимой. В связи с необходимостью предоставления эквивалентной монадической подписи member Bind : ma:'a list * f:('a -> 'b list) -> 'b list
для данной структуры данных естественно придерживаться списка F# и использовать соответствующую ему функцию более высокого порядка, List.collect
,
type ListBuilder () =
member __.Return x = [x]
member __.Bind(ma, f) = List.collect f ma
let myList a b = ListBuilder () {
let! x = a
let! y = b
return x, y }
myList [1..2] [3..4] // [(1, 3); (1, 4); (2, 3); (2, 4)]
Этот минимальный, но скользкий картезианский продукт не слишком далеко продвинет нас. Нам нужно сделать выполнение по цепочке условным, требуя дополнительного члена, Zero
, Очевидно, что фиксированная арность является основным недостатком этого подхода.
type MyListBuilder () =
member __.Zero _ = []
member __.Return x = [x]
member __.Bind(ma, f) = List.collect f ma
let myListXY cmp a b c = MyListBuilder () {
let! r = a
let! s = b
if cmp r s then
let! t = c
if cmp s t then
if cmp t r then
return r, s, t }
let T n k = if n < 2 then 0 else ((n - 2) * k * k - (n - 4) * k) / 2
let figurate s min max =
Seq.initInfinite ((+) 1)
|> Seq.map (T s)
|> Seq.takeWhile (fun n -> n < max)
|> Seq.filter (fun n -> n >= min)
|> Seq.toList
myListXY (fun x y -> x % 100 = y / 100)
(figurate 3 1000 10000)
(figurate 5 1000 10000)
(figurate 4 1000 10000) // [(8128, 2882, 8281)]