Подсвечники с использованием Matplotlib пропускают выходные
Мне нужна помощь. Я учусь между matplotlib и numpy. Я просто воспроизвожу фрагмент кода из "внутридневных свечных графиков с использованием Matplotlib" с моим собственным CSV-файлом, чтобы извлечь уроки из этого кода. Другая часть моего кода, которая отличается от этого, заключается в следующем:
import numpy as np
import matplotlib.pyplot as plt
import datetime
from mpl_finance import candlestick_ohlc
from matplotlib.dates import num2date
# data in a text file, 5 columns: time, opening, close, high, low
# note that I'm using the time you formated into an ordinal float data =
np.loadtxt("/Users/paul/Documents/python/Quant/INTC.csv", delimiter=",")
Я получаю ошибку, которая говорит
ValueError: could not convert string to float: b'Date'.
Я даже пытаюсь использовать эту строку и до сих пор выдает мне то же сообщение об ошибке
data = np.genfromtxt("/Users/paul/Documents/python/Quant/INTC.csv", delimiter=",", skip_header=1, usecols=[0,1,2,3,4], dtype=(dt, float,float,float, float))"
это, вероятно, основная концепция, которую я не понимаю. очень ценится за некоторые рекомендации.
Пример данных:
Date,Open,High,Low,Close,Volume,Adj Close
2017-11-06,46.599998,46.740002,46.090000,46.700001,46.700001,34035000
2017-11-07,46.700001,47.090000,46.389999,46.779999,46.779999,24461400
2017-11-08,46.619999,46.700001,46.279999,46.700001,46.700001,21565800
2017-11-09,46.049999,46.389999,45.650002,46.299999,46.299999,25570400
2017-11-10,46.040001,46.090000,45.380001,45.580002,45.580002,24095400
2017-11-13,45.259998,45.939999,45.250000,45.750000,45.750000,18999000
1 ответ
Вы можете импортировать "столбец даты" (строку), преобразовав его в объект datetime. Получив его в качестве объекта datetime, вы можете отфильтровать выходные дни, как показано ниже. Вы можете отобразить отфильтрованные данные в matplotlib, так как matplotlib понимает объекты datetime. надеюсь, это поможет.
'''
data in csv
Date,Open,High,Low,Close,Volume,Adj Close
2017-12-06,46.599998,46.740002,46.090000,46.700001,46.700001,34035000
2017-12-07,46.700001,47.090000,46.389999,46.779999,46.779999,24461400
2017-12-08,46.619999,46.700001,46.279999,46.700001,46.700001,21565800
2017-12-09,46.049999,46.389999,45.650002,46.299999,46.299999,25570400
2017-12-10,46.040001,46.090000,45.380001,45.580002,45.580002,24095400
2017-12-13,45.259998,45.939999,45.250000,45.750000,45.750000,18999000
'''
import numpy as np
from datetime import datetime
# use converter to convert a string object to datetime object. Note dtype is object for all columns
data = np.genfromtxt(r'stock.csv', delimiter = ',', names = True,
converters={0: lambda x: datetime.strptime(x, "%Y-%m-%d")}, dtype=object)
print data
'''
[ (datetime.datetime(2017, 12, 6, 0, 0), '46.599998', '46.740002', '46.090000', '46.700001', '46.700001', '34035000')
(datetime.datetime(2017, 12, 7, 0, 0), '46.700001', '47.090000', '46.389999', '46.779999', '46.779999', '24461400')
(datetime.datetime(2017, 12, 8, 0, 0), '46.619999', '46.700001', '46.279999', '46.700001', '46.700001', '21565800')
(datetime.datetime(2017, 12, 9, 0, 0), '46.049999', '46.389999', '45.650002', '46.299999', '46.299999', '25570400')
(datetime.datetime(2017, 12, 10, 0, 0), '46.040001', '46.090000', '45.380001', '45.580002', '45.580002', '24095400')
(datetime.datetime(2017, 12, 13, 0, 0), '45.259998', '45.939999', '45.250000', '45.750000', '45.750000', '18999000')]
'''
# check if a day is a weekday or not
def check_weekday_or_not(datetime_object):
if datetime_object.weekday() not in [5,6]:
# datetime.weekday() returns 5 and 6 for saturday and Sunday
return True
else:
return False
# create a function to apply on each row of the matrix
vfunc =np.vectorize(check_weekday_or_not)
filter_mask = vfunc(data['Date'])
print filter_mask
#[ True True True False False True]
# Apply the filter mask to obtain an array without weekends.
print data[filter_mask]
'''
array([ (datetime.datetime(2017, 12, 6, 0, 0), '46.599998', '46.740002', '46.090000', '46.700001', '46.700001', '34035000'),
(datetime.datetime(2017, 12, 7, 0, 0), '46.700001', '47.090000', '46.389999', '46.779999', '46.779999', '24461400'),
(datetime.datetime(2017, 12, 8, 0, 0), '46.619999', '46.700001', '46.279999', '46.700001', '46.700001', '21565800'),
(datetime.datetime(2017, 12, 13, 0, 0), '45.259998', '45.939999', '45.250000', '45.750000', '45.750000', '18999000')],
dtype=[('Date', 'O'), ('Open', 'O'), ('High', 'O'), ('Low', 'O'), ('Close', 'O'), ('Volume', 'O'), ('Adj_Close', 'O')])
'''