Итеративная / нерекурсивная сортировка слиянием
Я пробовал итеративную сортировку слиянием, но застрял в условиях, когда длина ввода не 2^x.
подобно int[] A ={4,5,1,254,66,75,12,8,65,4,87,63,53,8,99,54,12,34};
public class MergeSort {
public static void sort(int[] A) {
System.out.println("Log(A.len):"+log(A.length, 2));
for (int i = 0; i < log(A.length, 2); i++) { //log A.len
int r = 2 << i; //2^i
int mid = r >>> 1;
for (int j = 0; j+r < A.length; j = j + r) {
System.out.print("offset:" + j + " mid:" + (j + mid) + " r:" + (j + r));
merge(A, j, (j + mid), (j + r));
}
}
}
public static void merge(int[] A, int offset, int mid, int n) {
mid = mid - offset;
n = n - offset;
int[] L = new int[mid];
int[] R = new int[n - mid];
for (int i = 0; i < mid; i++) {
L[i] = A[i + offset];
R[i] = A[mid + i + offset];
}
System.out.print("\nL:");
print_array(L);
System.out.print("\nR:");
print_array(R);
int l = 0;
int r = 0; //left right pointer
int k = offset;
while (l < mid && r < mid) {
if (L[l] < R[r]) {
// System.out.println("in left");
A[k] = L[l];
l++;
} else {
// System.out.println("in right");
A[k] = R[r];
r++;
}
k++;
}
while (l < mid) {
A[k] = L[l];
l++;
k++;
}
while (r < mid) {
A[k] = R[r];
r++;
k++;
}
System.out.print("\nA:");
print_array(A);
System.out.print("\n\n");
}
public static void main(String[] args) {
int[] A ={4,5,1,254,66,75,12,8,65,4,87,63,53,8,99,54,12,34};
sort(A);
}
public static void print_array(int[] A) {
for (int i = 0; i < A.length; i++) {
System.out.print(A[i] + " ");
}
}
static int log(int x, int base) {
return (int) (Math.log(x) / Math.log(base));
}
}
Он отлично работает, когда длина ввода составляет 2 ^ х.
Также есть ли лучший способ реализовать итеративную версию, это выглядит очень грязно.
1 ответ
Пример C++ восходящей сортировки слиянием. a[] - массив для сортировки, b[] - временный массив. Он включает в себя проверку количества проходов слияния и обменов на месте, если число проходов будет нечетным, чтобы в итоге получить отсортированные данные в [].
void BottomUpMerge(int a[], int b[], size_t ll, size_t rr, size_t ee);
void BottomUpCopy(int a[], int b[], size_t ll, size_t rr);
size_t GetPassCount(size_t n);
void BottomUpMergeSort(int a[], int b[], size_t n)
{
size_t s = 1; // run size
if(GetPassCount(n) & 1){ // if odd number of passes
for(s = 1; s < n; s += 2) // swap in place for 1st pass
if(a[s] < a[s-1])
std::swap(a[s], a[s-1]);
s = 2;
}
while(s < n){ // while not done
size_t ee = 0; // reset end index
while(ee < n){ // merge pairs of runs
size_t ll = ee; // ll = start of left run
size_t rr = ll+s; // rr = start of right run
if(rr >= n){ // if only left run
rr = n;
BottomUpCopy(a, b, ll, rr); // copy left run
break; // end of pass
}
ee = rr+s; // ee = end of right run
if(ee > n)
ee = n;
BottomUpMerge(a, b, ll, rr, ee);
}
std::swap(a, b); // swap a and b
s <<= 1; // double the run size
}
}
void BottomUpMerge(int a[], int b[], size_t ll, size_t rr, size_t ee)
{
size_t o = ll; // b[] index
size_t l = ll; // a[] left index
size_t r = rr; // a[] right index
while(1){ // merge data
if(a[l] <= a[r]){ // if a[l] <= a[r]
b[o++] = a[l++]; // copy a[l]
if(l < rr) // if not end of left run
continue; // continue (back to while)
do // else copy rest of right run
b[o++] = a[r++];
while(r < ee);
break; // and return
} else { // else a[l] > a[r]
b[o++] = a[r++]; // copy a[r]
if(r < ee) // if not end of right run
continue; // continue (back to while)
do // else copy rest of left run
b[o++] = a[l++];
while(l < rr);
break; // and return
}
}
}
void BottomUpCopy(int a[], int b[], size_t ll, size_t rr)
{
do // copy left run
b[ll] = a[ll];
while(++ll < rr);
}
size_t GetPassCount(size_t n) // return # passes
{
size_t i = 0;
for(size_t s = 1; s < n; s <<= 1)
i += 1;
return(i);
}