(Vec4 x Mat4x4) продукт с использованием SIMD и улучшений

Я пишу сложную программу симуляции, и кажется, что самая трудоемкая процедура - это умножение четырех векторов (float4) на матрицу 4x4. Мне нужно запустить эту программу на нескольких компьютерах, которые более или менее старые. Вот почему я попытался проверить возможности SIMD таких операций в следующем коде:

//#include <xmmintrin.h> // SSE
//#include <pmmintrin.h> // SSE3
//#include <nmmintrin.h> // SSE4.2
  #include <immintrin.h> // AVX

#include <iostream>
#include <ctime>
#include <string>

using namespace std;

// 4-vector.
typedef struct
{
    float x;
    float y;
    float z;
    float w;
}float4;

// typedef to simplify the pointer of function notation.
typedef void(*Function)(float4&,const float4*,const float4&);

float dot( const float4& in_A, const float4& in_x )
{
    return in_A.x*in_x.x + in_A.y*in_x.y + in_A.z*in_x.z + in_A.w*in_x.w; // 7 FLOPS
}

void A_times_x( float4& out_y, const float4* in_A, const float4& in_x )
{
    out_y.x = dot(in_A[0], in_x); // 7 FLOPS
    out_y.y = dot(in_A[1], in_x); // 7 FLOPS
    out_y.z = dot(in_A[2], in_x); // 7 FLOPS
    out_y.w = dot(in_A[3], in_x); // 7 FLOPS
}

void A_times_x_SSE( float4& out_y, const float4* in_A, const float4& in_x )
{
    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m128 A0 = _mm_load_ps((const float*)(in_A + 0));
    __m128 A1 = _mm_load_ps((const float*)(in_A + 1));
    __m128 A2 = _mm_load_ps((const float*)(in_A + 2));
    __m128 A3 = _mm_load_ps((const float*)(in_A + 3));

    // Transpose the matrix and re-order the vector.
    _MM_TRANSPOSE4_PS( A0,A1,A2,A3 );

    __m128 u1 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(0,0,0,0));
    __m128 u2 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(1,1,1,1));
    __m128 u3 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(2,2,2,2));
    __m128 u4 = _mm_shuffle_ps(x,x, _MM_SHUFFLE(3,3,3,3));

    // Multiply each matrix row with the vector x
    __m128 m0 = _mm_mul_ps(A0, u1); // 4 FLOPS
    __m128 m1 = _mm_mul_ps(A1, u2); // 4 FLOPS
    __m128 m2 = _mm_mul_ps(A2, u3); // 4 FLOPS
    __m128 m3 = _mm_mul_ps(A3, u4); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m128 sum_01 = _mm_add_ps(m0, m1); // 4 FLOPS
    __m128 sum_23 = _mm_add_ps(m2, m3); // 4 FLOPS
    __m128 result = _mm_add_ps(sum_01, sum_23); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);
}

void A_times_x_SSE3( float4& out_y, const float4* in_A, const float4& in_x )
{
    // Should be 4 (SSE) x 4 (ALU) = 16 times faster than scalar.

    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m128 A0 = _mm_load_ps((const float*)(in_A + 0));
    __m128 A1 = _mm_load_ps((const float*)(in_A + 1));
    __m128 A2 = _mm_load_ps((const float*)(in_A + 2));
    __m128 A3 = _mm_load_ps((const float*)(in_A + 3));

    // Multiply each matrix row with the vector x
    __m128 m0 = _mm_mul_ps(A0, x); // 4 FLOPS
    __m128 m1 = _mm_mul_ps(A1, x); // 4 FLOPS
    __m128 m2 = _mm_mul_ps(A2, x); // 4 FLOPS
    __m128 m3 = _mm_mul_ps(A3, x); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m128 sum_01 = _mm_hadd_ps(m0, m1); // 4 FLOPS
    __m128 sum_23 = _mm_hadd_ps(m2, m3); // 4 FLOPS
    __m128 result = _mm_hadd_ps(sum_01, sum_23); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);
}

void A_times_x_SSE4( float4& out_y, const float4* in_A, const float4& in_x ) // 28 FLOPS
{
    // Should be 4 (SSE) x 4 (ALU) = 16 times faster than scalar.

    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m128 A0 = _mm_load_ps((const float*)(in_A + 0));
    __m128 A1 = _mm_load_ps((const float*)(in_A + 1));
    __m128 A2 = _mm_load_ps((const float*)(in_A + 2));
    __m128 A3 = _mm_load_ps((const float*)(in_A + 3));

    // Multiply each matrix row with the vector x
    __m128 m0 = _mm_dp_ps(A0, x, 0xFF); // 4 FLOPS
    __m128 m1 = _mm_dp_ps(A1, x, 0xFF); // 4 FLOPS
    __m128 m2 = _mm_dp_ps(A2, x, 0xFF); // 4 FLOPS
    __m128 m3 = _mm_dp_ps(A3, x, 0xFF); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m128 mov_01 = _mm_movelh_ps(m0, m1); // 4 FLOPS
    __m128 mov_23 = _mm_movelh_ps(m2, m3); // 4 FLOPS
    __m128 result = _mm_shuffle_ps(mov_01, mov_23, _MM_SHUFFLE(2, 0, 2, 0)); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);
}

void A_times_x_AVX( float4& out_y, const float4* in_A, const float4& in_x )
{
    // Load matrix A and vector x into SSE registers
    __m128 x  = _mm_load_ps((const float*)&in_x); // load/store are almost = 0 FLOPS
    __m256 xx = _mm256_castps128_ps256(x);
           xx = _mm256_insertf128_ps(xx,x,1);
    __m256 A0 = _mm256_load_ps((const float*)(in_A + 0));
    __m256 A2 = _mm256_load_ps((const float*)(in_A + 2));

    // Multiply each matrix row with the vector x
    __m256 m0 = _mm256_mul_ps(A0, xx); // 4 FLOPS
    __m256 m2 = _mm256_mul_ps(A2, xx); // 4 FLOPS

    // Using HADD, we add four floats at a time
    __m256 sum_00 = _mm256_hadd_ps(m0, m2); // 4 FLOPS

  /*__m128 sum_10 = _mm256_extractf128_ps(sum_00,0);
    __m128 sum_01 = _mm256_extractf128_ps(sum_00,1);

    __m128 result = _mm_hadd_ps(sum_10, sum_01); // 4 FLOPS

    // Finally, store the result
    _mm_store_ps((float*)&out_y, result);*/

    // Finally, store the result (no temp variable: direct HADD, this avoid to copy from ALU128 to ALU256)
    _mm_store_ps((float*)&out_y, _mm_hadd_ps(_mm256_extractf128_ps(sum_00,0),
                                             _mm256_extractf128_ps(sum_00,1)));
}

void test_function ( Function f, string simd, unsigned int imax )
{
    float4 Y;
    float4 X1 = {0.5,1,0.2,0.7};
    float4 X2 = {0.7,1,0.2,0.5};
    float4 X3 = {0.5,0.2,1,0.7};
    float4 X4 = {1,0.7,0.2,0.5};
    float4 A[4] = {{0.5,1,0.2,0.7},
                   {0.6,0.4,0.1,0.8},
                   {0.3,0.8,0.2,0.5},
                   {1,0.4,0.6,0.9}};

    clock_t tstart = clock();

    for( unsigned int i=0 ; i<imax ; i++ )
    for( unsigned long int j=0 ; j<250000000 ; j++ )
    // Avoid for loop over long long, it is 2 times slower !
    {
        // Function pointer give a real call, whether the direct
        // call is inlined and thus results are overestimated.
        f( Y,A,X1 );
        f( Y,A,X2 );
        f( Y,A,X3 );
        f( Y,A,X4 );
    }

    clock_t tend = clock();

    double diff = static_cast<double>(tend - tstart) * 1e-3;

    cout << "Time  (" << simd << ") = " << diff << " s" << endl;
    cout << "Nops  (" << simd << ") = " << (double) imax << ".10^9" << endl;
    cout << "Power (" << simd << ") = " << (double) imax * 28. / diff << " GFLOPS" << endl; // 28 FLOPS for std.
    cout << endl;
}

int main ( int argc, char *argv[] )
{
    test_function ( &A_times_x     ,"std" , 1 );
    test_function ( &A_times_x_SSE ,"SSE" , 2 );
    test_function ( &A_times_x_SSE3,"SSE3", 3 );
    test_function ( &A_times_x_SSE4,"SSE4", 1 );
    test_function ( &A_times_x_AVX ,"AVX" , 3 );

    return 0;
}

У меня есть некоторые проблемы с улучшениями для такой проблемы. При запуске кода я получаю следующие результаты (Intel Core i5 4670K, 3,4 ГГц, Haswell, компилятор Codeblock+MinGW с использованием -O2 -march=corei7-avx):

Time  (std) = 6.287 s
Nops  (std) = 1.10^9
Power (std) = 4.45363 GFLOPS

Time  (SSE) = 6.661 s
Nops  (SSE) = 2.10^9
Power (SSE) = 8.40715 GFLOPS

Time  (SSE3) = 8.361 s
Nops  (SSE3) = 3.10^9
Power (SSE3) = 10.0466 GFLOPS

Time  (SSE4) = 6.131 s
Nops  (SSE4) = 1.10^9
Power (SSE4) = 4.56695 GFLOPS

Time  (AVX) = 8.767 s
Nops  (AVX) = 3.10^9
Power (AVX) = 9.58138 GFLOPS

Мои вопросы следующие:

  1. Можно ли улучшить производительность / ускорить? Должно быть х4 (максимум) для SSE и х8 для AVX.

  2. Почему AVX не быстрее SSE3?

Для тех, кто говорит: "Прекратите использовать ваши вещи, используйте Intel Math Kernel Library", я отвечу: "Я бы не стал, потому что я хочу небольшой исполняемый файл, и мне нужно использовать SIMD только для этого конкретного случая, а не где-либо еще";-)

1 ответ

Решение

Можно ли улучшить производительность / ускорить? Должно быть х4 (максимум) для SSE и х8 для AVX.

Да, я объяснил это подробно в эффективном 4x4-матричном-векторном умножении-с-sse-горизонтальным-сложением-и-точкой-продуктом.

Эффективный метод умножения матрицы 4х4 M с вектором столбца u дающий v = M u является:

v = u1*col1 + u2*col2 + u3*col3 + u4*col4.

для этого необходимо хранить векторы столбцов. Например, давайте предположим, что у вас есть следующая матрица 4x4 A:

 0  1  2  3
 4  5  6  7
 8  9 10 11
12 13 14 15  

тогда вы храните это как

0 4 8 c 1 5 9 d 2 6 a e 3 7 b f

и наоборот, если вы хотите вектор строки uT временная матрица M дающий vT = uT*M тогда ты хочешь

vT = uT1*row1 + uT2*row2 + uT3*row3 + uT4*row4.

и в этом случае вы должны упаковать строки, а не столбцы.

Таким образом, чтобы оптимизировать ваш код в вашей функции A_times_x_SSE закомментируйте строку

 _MM_TRANSPOSE4_PS( A0,A1,A2,A3 );

и эта функция будет быстрее, чем ваши другие функции, использующие горизонтальные операции.

Горизонтальные операции с SIMD не эффективны. В некоторых случаях они не SIMD, потому что они разбиты на скалярные микрооперации, поэтому они не параллельны. Они полезны только тогда, когда неудобно упаковывать ваши данные в удобную для SIMD форму. Например, когда вы не можете хранить столбцы M и только строки.

Почему AVX не быстрее SSE3?

Чтобы сделать это эффективно с AVX, вы должны работать с двумя матрицами 4x4 одновременно, а также упаковать свои матрицы так, чтобы они были удобны для AVX. Теперь давайте предположим, что в дополнение к матрице A определенный выше у вас есть другая матрица B:

16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

Оптимальный способ упаковки A а также B для AVX есть

col1A col1B col2A col2B col3A col3B col4A col4B
0 4 8 12 16 20 24 28 1 5 9 13 17 21 25 29 2 6 10 14 18 22 26 30 3 7 11 15 19 23 27 31

Давайте предположим, что у вас есть два вектора u = {0,1,2,3} а также v = {4,5,6,7) и вы хотите y знак равно Au а также z знак равно Bv тогда с AVX вы делаете:

c1 = col1A col1B = {0  4  8 12 16 20 24 28} = _mm256_load_ps
c2 = col2A col2B = {1  5  9 13 17 21 25 29}
c3 = col3A col3B = {2  6 10 14 18 22 26 30}
c4 = col4A col4B = {3  7 11 15 19 23 27 31}
broad1 = {0,0,0,0,4,4,4,4}
broad2 = {1,1,1,1,5,5,5,5}
broad3 = {2,2,2,2,6,6,6,6}
broad4 = {3,3,3,3,7,7,7,7}
w = broad1*c1 + broad2*c2 + broad3*c + broad4*c4;
//w = {y1, y2, y3, y4, z1, z2, z3, z4};

Итак, результирующий вектор шириной 8 w содержит 4 вектора y а также z, Это самый эффективный метод с AVX. Если у вас есть фиксированные матрицы и векторы переменных, которые вы можете перебрать в цикле, то упаковка перед циклом во время выполнения будет незначительной для большого цикла. Если вы знаете, что матрицы фиксированы во время компиляции, то вы можете упаковать во время компиляции.

Другие вопросы по тегам