На моей (по общему признанию, замученной) функции Haskell появляется ложное ограничение. Как я могу удовлетворить это?
Играя с DataKinds
в Haskell я создал следующий код, который реализует и использует некоторые унарные nats на уровне типов:
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
module Demo where
import Data.Proxy
import Data.Semigroup
import Numeric.Natural
import Data.Constraint
data Nat = Zero | Succ Nat
type family Pred (n :: Nat) where Pred ('Succ n) = n
class IsNat (n :: Nat) where
nat :: proxy n -> Natural
unNat :: proxy n -> (n ~ 'Zero => x) -> ((n ~ 'Succ (Pred n), IsNat (Pred n)) => x) -> x
instance IsNat 'Zero where
nat _ = 0
unNat _ z _ = z
instance IsNat n => IsNat ('Succ n) where
nat _ = succ (nat (Proxy @n))
unNat _ _ s = s
noneIsNotSuccd :: (n ~ 'Zero, n ~ 'Succ (Pred n)) => proxy n -> a
noneIsNotSuccd _ = error "GHC proved ('Zero ~ 'Succ (Pred 'Zero))!" -- don't worry, this won't happen
predSuccIsNat :: forall n proxy r. (n ~ 'Succ (Pred n)) => proxy n -> (IsNat (Pred n) => r) -> r
predSuccIsNat proxy r = unNat proxy (noneIsNotSuccd proxy) r
data Indexed (n :: Nat) where
Z :: Indexed 'Zero
S :: Indexed n -> Indexed ('Succ n)
instance Show (Indexed n) where
show Z = "0"
show (S n) = "S" <> show n
recr :: forall n x. (IsNat n, Semigroup x) => (forall k. IsNat k => Indexed k -> x) -> Indexed n -> x
recr f Z = f Z
recr f (S predn) = predSuccIsNat (Proxy @n) (f predn) <> f (S predn)
main :: IO ()
main = print $ getSum $ recr (Sum . nat) (S Z)
Когда я пытаюсь скомпилировать его в GHC 8.2.2, я получаю следующую ошибку типа:
Demo.hs:35:25: error:
• Could not deduce (IsNat (Pred n)) arising from a use of ‘unNat’
from the context: n ~ 'Succ (Pred n)
bound by the type signature for:
predSuccIsNat :: forall (n :: Nat) (proxy :: Nat -> *) r.
n ~ 'Succ (Pred n) =>
proxy n -> (IsNat (Pred n) => r) -> r
at Demo.hs:34:1-96
• In the expression: unNat proxy (noneIsNotSuccd proxy) r
In an equation for ‘predSuccIsNat’:
predSuccIsNat proxy r = unNat proxy (noneIsNotSuccd proxy) r
|
35 | predSuccIsNat proxy r = unNat proxy (noneIsNotSuccd proxy) r
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
По общему признанию, это улучшение по сравнению с тем, что происходит в GHC 8.0.1, где он прекрасно компилируется и затем завершается с ошибкой во время выполнения:
*** Exception: Demo.hs:34:23: error:
• Could not deduce (IsNat (Pred n)) arising from a use of ‘unNat’
from the context: n ~ 'Succ (Pred n)
bound by the type signature for:
predSuccIsNat :: n ~ 'Succ (Pred n) =>
proxy n -> (IsNat (Pred n) => r) -> r
at Demo.hs:33:1-78
• In the expression: unNat proxy (noneIsNotSuccd proxy)
In an equation for ‘predSuccIsNat’:
predSuccIsNat proxy = unNat proxy (noneIsNotSuccd proxy)
(deferred type error)
Похоже, что в GHC 8.2.2, unNat
принимает неявное (IsNat (Pred n))
ограничение, которое не отображается в сигнатуре типа:
λ» :t unNat
unNat
:: IsNat n =>
proxy n
-> (n ~ 'Zero => x)
-> ((n ~ 'Succ (Pred n), IsNat (Pred n)) => x)
-> x
Можно ли мне позвонить unNat
реализовать что-то вроде predSuccIsNat
?
1 ответ
predSuccIsNat :: forall n proxy r. (n ~ 'Succ (Pred n)) => proxy n -> (IsNat (Pred n) => r) -> r
predSuccIsNat proxy r = unNat proxy (noneIsNotSuccd proxy) r
^^^^^
Я не знаю, где вы ожидаете получить IsNat
словарь, который вам нужен для того, чтобы использовать unNat
, Если я добавлю его в подпись типа
predSuccIsNat :: forall n proxy r. IsNat n => (n ~ 'Succ (Pred n)) => proxy n -> (IsNat (Pred n) => r) -> r
predSuccIsNat proxy r = unNat proxy (noneIsNotSuccd proxy) r
все работает нормально (на ghc 8.2.1, которая имеет ту же проблему с отложенным вызовом, что и 8.0.1).
Без этого кажется, что вы хотите сделать вывод, что если n ~ 'Succ (Pred n)
затем IsNat n
- предположительно из-за того, что Pred n
определяется только на Succ
s. Но даже если сделать такой вывод, этого будет недостаточно. Например n ~ Succ m
недостаточно, чтобы вывести IsNat
либо вам также понадобится IsNat m
,