Я не могу использовать GPT4All со Streamlit.
Я пытаюсь использовать GPT4All с Streamlit в своем коде Python, но кажется, что какой-то параметр получает неправильные значения. Я испробовал все альтернативы. Это выглядит небольшой проблемой, которую я где-то упускаю.
Мой код:
from langchain import HuggingFaceHub, LLMChain, PromptTemplate
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from htmlTemplates import bot_template, user_template, css
import transformers
from transformers import pipeline
from gpt4all.gpt4all import GPT4All
def get_pdf_text(pdf_files):
text = ""
for pdf_file in pdf_files:
reader = PdfReader(pdf_file)
for page in reader.pages:
text += page.extract_text()
return text
def get_chunk_text(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
# For OpenAI Embeddings
# embeddings = OpenAIEmbeddings()
# For Huggingface Embeddings
# model_name = "hkunlp/instructor-xl"
embeddings = HuggingFaceInstructEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def get_conversation_chain(vector_store):
# OpenAI Model
# llm = ChatOpenAI()
# HuggingFace Model
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl",
# model_kwargs={"temperature": 0.8, "max_length": 5000})
# HuggingFace Model (downloaded)
# model_name = "distilgpt2" # or choose any models - distilroberta, roberta, bart etc
# llm = transformers.AutoModelForCausalLM.from_pretrained(model_name)
# Create GPT4All Model
gpt4all = GPT4All(model_name="ggml-gpt4all-j-v1.3-groovy.bin", model_path="./")
#prompt = PromptTemplate(template="{question}", input_variables=["question"])
#llm_chain = LLMChain(prompt=prompt, llm=gpt4all)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=gpt4all,
retriever=vector_store.as_retriever(),
memory=memory
)
return conversation_chain
def handle_user_input(question):
response = st.session_state.conversation({'question': question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title='Chat with Your own PDFs',
page_icon=':books:')
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header('Chat with Your own PDFs :books:')
question = st.text_input("Ask anything to your PDF: ")
if question:
handle_user_input(question)
with st.sidebar:
st.subheader("Upload your Documents Here: ")
pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=[
'pdf'], accept_multiple_files=True)
if st.button("OK"):
with st.spinner("Processing your PDFs..."):
# Get PDF Text
raw_text = get_pdf_text(pdf_files)
# Get Text Chunks
text_chunks = get_chunk_text(raw_text)
# Create Vector Store
vector_store = get_vector_store(text_chunks)
st.write("DONE")
# Create conversation chain
st.session_state.conversation = get_conversation_chain(
vector_store)
if __name__ == '__main__':
main()
Я получаю следующее исключение:
2023-08-24 18:41:50.816 Uncaught app exception
Traceback (most recent call last):
File "C:\Users\MudassarMa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 556, in _run_script
exec(code, module.__dict__)
File "C:\Users\MudassarMa\Downloads\Misc\DataScience\taxgpt\main.py", line 153, in <module>
main()
File "C:\Users\MudassarMa\Downloads\Misc\DataScience\taxgpt\main.py", line 148, in main
st.session_state.conversation = get_conversation_chain(
^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\MudassarMa\Downloads\Misc\DataScience\taxgpt\main.py", line 85, in get_conversation_chain
conversation_chain = ConversationalRetrievalChain.from_llm(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\MudassarMa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\langchain\chains\conversational_retrieval\base.py", line 213, in from_llm
doc_chain = load_qa_chain(
^^^^^^^^^^^^^^
File "C:\Users\MudassarMa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\langchain\chains\question_answering\__init__.py", line 238, in load_qa_chain
return loader_mapping[chain_type](
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "C:\Users\MudassarMa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\langchain\chains\question_answering\__init__.py", line 70, in _load_stuff_chain
llm_chain = LLMChain(
^^^^^^^^^
File "C:\Users\MudassarMa\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\langchain\load\serializable.py", line 61, in __init__
super().__init__(**kwargs)
File "pydantic\main.py", line 341, in pydantic.main.BaseModel.__init__
pydantic.error_wrappers.ValidationError: 1 validation error for LLMChain
llm
value is not a valid dict (type=type_error.dict)