Есть ли способ преобразовать тип tvm.runtime.module.Module в тип tvm.IRModule?
Я новичок в ТВМ. У меня есть оптимизированная модель TVM в виде файла tar. Я пытаюсь сравнить его, запустив на нем вывод. Я ссылался на код бенчмаркинга и на этот файл .
Вот мой код:
import numpy as np
import os
import tvm
from tvm import te
from tvm.contrib import graph_executor, graph_runtime
from tvm import relay
from tvm.runtime import container
from tvm.runtime import vm as vm_rt
from tvm.relay import testing
from tvm.relay import vm
def benchmark_execution(
mod,
params,
measure=True,
data_shape=(1, 3, 224, 224),
out_shape=(1, 1000),
dtype="float32",
model="unknown",
):
def get_graph_executor_output(
mod, data, params, target, dev, dtype="float32", number=2, repeat=20
):
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target, params=params)
m = graph_executor.GraphModule(lib["default"](dev))
# set inputs
m.set_input("data", data)
m.run()
out = m.get_output(0, tvm.nd.empty(out_shape, dtype))
if measure:
print("Evaluate graph executor inference cost of {} on " "{}".format(model, repr(dev)))
ftimer = m.module.time_evaluator("run", dev, number=1, repeat=20)
# Measure in millisecond.
prof_res = np.array(ftimer().results) * 1000
print(
"Mean graph executor inference time (std dev): %.2f ms (%.2f ms)"
% (np.mean(prof_res), np.std(prof_res))
)
return out.numpy()
def get_vm_output(mod, data, params, target, dev, dtype="float32", number=2, repeat=20):
with tvm.transform.PassContext(opt_level=3):
exe = vm.compile(mod, target, params=params)
rly_vm = vm_rt.VirtualMachine(exe, dev)
result = rly_vm.run(data)
if measure:
print("Evaluate vm inference cost of {} on {}".format(model, repr(dev)))
ftimer = rly_vm.module.time_evaluator("invoke", dev, number=number, repeat=repeat)
# Measure in millisecond.
prof_res = np.array(ftimer("main", data).results) * 1000
print(
"Mean vm inference time (std dev): %.2f ms (%.2f ms)"
% (np.mean(prof_res), np.std(prof_res))
)
return result.numpy().astype(dtype)
# random input
data = np.random.uniform(size=data_shape).astype(dtype)
for target, dev in testing.enabled_targets():
tvm_out = get_graph_executor_output(
mod, tvm.nd.array(data.astype(dtype)), params, target, dev, dtype
)
vm_out = get_vm_output(mod, tvm.nd.array(data.astype(dtype)), params, target, dev, dtype)
tvm.testing.assert_allclose(vm_out, tvm_out, rtol=1e-5, atol=1e-5)
def run(model_path, image_shape = (1, 3, 224, 224), out_shape=(1, 1000)):
from tvm.contrib import cc as _cc, utils as _utils, tar as _tar
tar_temp = _utils.tempdir(custom_path=model_path.replace(".tar", ""))
_tar.untar(model_path, tar_temp.temp_dir)
files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
model_lib, json_file, params_file = [os.path.basename(x) for x in files]
print(model_lib, json_file, params_file)
loaded_json = open(tar_temp.relpath(json_file)).read()
loaded_mod = tvm.runtime.load_module(tar_temp.relpath(model_lib))
print(type(loaded_mod))
loaded_params = bytearray(open(tar_temp.relpath(params_file), "rb").read())
benchmark_execution(loaded_mod, loaded_params,model="optimized")
if __name__ == "__main__":
run("model.tar")
Я получаю следующее при запуске:
mod.so mod.json mod.params <class 'tvm.runtime.module.Module'> [10:59:08] /workspace/tvm/src/target/target_kind.cc:164: Warning: Unable to detect CUDA version, default to "-arch=sm_20" instead
Traceback (most recent call last):
File "tvm_benchmark.py", line 87, in <module>
run("model.tar")
File "tvm_benchmark.py", line 84, in run
benchmark_execution(loaded_mod, loaded_params,model="optimized")
File "tvm_benchmark.py", line 68, in benchmark_execution
mod, tvm.nd.array(data.astype(dtype)), params, target, dev, dtype
File "tvm_benchmark.py", line 25, in get_graph_executor_output
lib = relay.build(mod, target, params=params)
File "/opt/conda/envs/env_orig/lib/python3.7/site-packages/tvm/relay/build_module.py", line 339, in build
raise ValueError("Type of input parameter mod must be tvm.IRModule") ValueError: Type of input parameter mod must be tvm.IRModule
У меня: версия CUDA - 11.5 версия TVM - 0.10.0
Я попытался tvm.runtime.Module.save сохранить файл, чтобы позже я мог получить тип tvm.IRModel с помощью tvm.ir.load_json, но это не сработало.