Проблема ложной зависимости для архитектуры Fermi

Я пытаюсь добиться "3перекрытие "с помощью 3 потоки, как в примерах в потоках CUDA и параллельном вебинаре. Но я не смог этого достичь.

У меня Geforce GT 550M (архитектура Fermi с одним механизмом копирования), и я использую Windows 7 (64-разрядная версия).

Вот код, который я написал.

#include <iostream>

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

// includes, project
#include "helper_cuda.h"
#include "helper_functions.h" // helper utility functions 

#include <stdio.h>

using namespace std;

#define DATA_SIZE 6000000
#define NUM_THREADS 32
#define NUM_BLOCKS 16
#define NUM_STREAMS 3

__global__ void kernel(const int *in, int *out, int dataSize)
{
    int start = blockIdx.x * blockDim.x + threadIdx.x;
    int end =  dataSize;
    for (int i = start; i < end; i += blockDim.x * gridDim.x) 
    {
        out[i] = in[i] * in[i];
    }
}

int main()
{
    const int dataSize = DATA_SIZE;
    int *h_in = new int[dataSize];
    int *h_out = new int[dataSize];
    int *h_groundTruth = new int[dataSize];

    // Input population
    for(int i = 0; i < dataSize; i++)
        h_in[i] = 5;

    for(int i = 0; i < dataSize; i++)
        h_out[i] = 0;

    // CPU calculation for ground truth
    for(int i = 0; i < dataSize; i++)
        h_groundTruth[i] = h_in[i] * h_in[i];

    // Choose which GPU to run on, change this on a multi-GPU system.
    checkCudaErrors( cudaSetDevice(0) );

    int *d_in = 0;
    int *d_out = 0;
    int streamSize = dataSize / NUM_STREAMS;
    size_t memSize = dataSize * sizeof(int);
    size_t streamMemSize = memSize / NUM_STREAMS;

    checkCudaErrors( cudaMalloc( (void **)&d_in, memSize) );
    checkCudaErrors( cudaMalloc( (void **)&d_out, memSize) );

    // registers host memory as page-locked (required for asynch cudaMemcpyAsync)
    checkCudaErrors(cudaHostRegister(h_in, memSize, cudaHostRegisterPortable));
    checkCudaErrors(cudaHostRegister(h_out, memSize, cudaHostRegisterPortable));

    // set kernel launch config
    dim3 nThreads = dim3(NUM_THREADS,1,1);
    dim3 nBlocks = dim3(NUM_BLOCKS,1,1);

    cout << "GPU Kernel Configuration : " << endl;
    cout << "Number of Streams :\t" << NUM_STREAMS << " with size: \t" << streamSize << endl;
    cout << "Number of Threads :\t" << nThreads.x << "\t" << nThreads.y << "\t" << nThreads.z << endl;
    cout << "Number of Blocks :\t" << nBlocks.x << "\t" << nBlocks.y << "\t" << nBlocks.z << endl;

    // create cuda stream
    cudaStream_t streams[NUM_STREAMS];
    for(int i = 0; i < NUM_STREAMS; i++)
        checkCudaErrors(cudaStreamCreate(&streams[i]));

    // create cuda event handles
    cudaEvent_t start, stop;
    checkCudaErrors(cudaEventCreate(&start));
    checkCudaErrors(cudaEventCreate(&stop));

    cudaEventRecord(start, 0);

    // overlapped execution using version 2

    for(int i = 0; i < NUM_STREAMS; i++)
    {
        int offset = i * streamSize;
        cudaMemcpyAsync(&d_in[offset], &h_in[offset], streamMemSize, cudaMemcpyHostToDevice,     streams[i]);
    }

    //cudaMemcpy(d_in, h_in, memSize, cudaMemcpyHostToDevice);

    for(int i = 0; i < NUM_STREAMS; i++)
    {
        int offset = i * streamSize;
        dim3 subKernelBlock = dim3((int)ceil((float)nBlocks.x / 2));

        //kernel<<<nBlocks, nThreads, 0, streams[i]>>>(&d_in[offset], &d_out[offset],   streamSize);
        kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset], &d_out[offset],   streamSize/2);
        kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset + streamSize/2],    &d_out[offset +  streamSize/2], streamSize/2);
    }

    for(int i = 0; i < NUM_STREAMS; i++)
    {
        int offset = i * streamSize;
        cudaMemcpyAsync(&h_out[offset], &d_out[offset], streamMemSize, cudaMemcpyDeviceToHost,   streams[i]);
    }



    for(int i = 0; i < NUM_STREAMS; i++)
        checkCudaErrors(cudaStreamSynchronize(streams[i]));

    cudaEventRecord(stop, 0);

    checkCudaErrors(cudaStreamSynchronize(0));

    checkCudaErrors(cudaDeviceSynchronize());

    float gpu_time = 0;
    checkCudaErrors(cudaEventElapsedTime(&gpu_time, start, stop));


    // release resources
    checkCudaErrors(cudaEventDestroy(start));
    checkCudaErrors(cudaEventDestroy(stop));
    checkCudaErrors(cudaHostUnregister(h_in));
    checkCudaErrors(cudaHostUnregister(h_out));
    checkCudaErrors(cudaFree(d_in));
    checkCudaErrors(cudaFree(d_out));

    for(int i = 0; i < NUM_STREAMS; i++)
        checkCudaErrors(cudaStreamDestroy(streams[i]));

    cudaDeviceReset();  

    cout << "Execution Time of GPU: " << gpu_time << "ms" << endl;


    // GPU output check
    int sum = 0;
    for(int i = 0; i < dataSize; i++)       
        sum += h_groundTruth[i] - h_out[i];

    cout << "Error between CPU and GPU: " << sum << endl;

    delete[] h_in;
    delete[] h_out;
    delete[] h_groundTruth;

    return 0;
}

Используя Nsight для профилирования, я получаю такой результат:

введите описание изображения здесь

Это может показаться правильным, но почему передача D2H в потоке #1 начинается только при последнем запуске ядра потока #2, а не раньше? Я пытался также использовать 8 потоки (просто путем изменения NUM_STREAM в 8) чтобы достичь такого3-перекрытие "и вот результат:

введите описание изображения здесь

Интересно то, что когда я использую 8 потоки, перекрытия между вычислениями и передачей памяти, кажется, намного лучше.

В чем причина этой проблемы? Это из-за драйвера WDDM или что-то не так с моей программой?

1 ответ

Решение

Из вышеприведенных комментариев кажется, что проблема OP - это проблема ложной зависимости, которая пострадала от архитектуры Fermi и была решена с помощью функции Hyper-Q архитектуры Kepler.

Подводя итог, ОП подчеркивает тот факт, что первая передача D2H (поток #1) не начинается сразу после завершения последней H2D (поток #3), хотя в принципе это возможно. Промежуток времени выделен красным кружком на следующем рисунке (далее, но для указанного иначе все тесты относятся к GeForce GT540M, принадлежащему семейству Fermi):

Подход ФП - это подход в ширину, который работает по следующей схеме:

for(int i = 0; i < NUM_STREAMS; i++)
    cudaMemcpyAsync(..., cudaMemcpyHostToDevice,   streams[i]);

for(int i = 0; i < NUM_STREAMS; i++)
{
    kernel_launch_1<<<..., 0, streams[i]>>>(...);
    kernel_launch_2<<<..., 0, streams[i]>>>(...);
}

for(int i = 0; i < NUM_STREAMS; i++)
    cudaMemcpyAsync(..., cudaMemcpyDeviceToHost,   streams[i]);

Используя подход глубины, работающий по следующей схеме

for(int i = 0; i < NUM_STREAMS; i++)
{
    cudaMemcpyAsync(...., cudaMemcpyHostToDevice, streams[i]);

    kernel_launch_1<<<...., 0, streams[i]>>>(....);
    kernel_launch_2<<<...., 0, streams[i]>>>(....);

    cudaMemcpyAsync(...., cudaMemcpyDeviceToHost,   streams[i]);
}

кажется, не улучшит ситуацию, согласно следующей временной шкале (код глубины первый указан в нижней части ответа), но он, кажется, показывает худшее перекрытие:

При подходе в ширину и комментировании запуска второго ядра первая копия D2H запускается немедленно, как только может, как сообщается в следующей временной шкале:

Наконец, при запуске кода на Kepler K20c проблема не обнаруживается, как показано на следующем рисунке:

Вот код для подхода глубины:

#include <iostream>

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

// includes, project
#include "helper_cuda.h"
#include "helper_functions.h" // helper utility functions

#include <stdio.h>

using namespace std;

#define DATA_SIZE 6000000
#define NUM_THREADS 32
#define NUM_BLOCKS 16
#define NUM_STREAMS 3

__global__ void kernel(const int *in, int *out, int dataSize)
{
    int start = blockIdx.x * blockDim.x + threadIdx.x;
    int end =  dataSize;
    for (int i = start; i < end; i += blockDim.x * gridDim.x)
    {
        out[i] = in[i] * in[i];
    }
}

int main()
{
    const int dataSize = DATA_SIZE;
    int *h_in = new int[dataSize];
    int *h_out = new int[dataSize];
    int *h_groundTruth = new int[dataSize];

    // Input population
    for(int i = 0; i < dataSize; i++)
        h_in[i] = 5;

    for(int i = 0; i < dataSize; i++)
        h_out[i] = 0;

    // CPU calculation for ground truth
    for(int i = 0; i < dataSize; i++)
        h_groundTruth[i] = h_in[i] * h_in[i];

    // Choose which GPU to run on, change this on a multi-GPU system.
    checkCudaErrors( cudaSetDevice(0) );

    int *d_in = 0;
    int *d_out = 0;
    int streamSize = dataSize / NUM_STREAMS;
    size_t memSize = dataSize * sizeof(int);
    size_t streamMemSize = memSize / NUM_STREAMS;

    checkCudaErrors( cudaMalloc( (void **)&d_in, memSize) );
    checkCudaErrors( cudaMalloc( (void **)&d_out, memSize) );

    // registers host memory as page-locked (required for asynch cudaMemcpyAsync)
    checkCudaErrors(cudaHostRegister(h_in, memSize, cudaHostRegisterPortable));
    checkCudaErrors(cudaHostRegister(h_out, memSize, cudaHostRegisterPortable));

    // set kernel launch config
    dim3 nThreads = dim3(NUM_THREADS,1,1);
    dim3 nBlocks = dim3(NUM_BLOCKS,1,1);

    cout << "GPU Kernel Configuration : " << endl;
    cout << "Number of Streams :\t" << NUM_STREAMS << " with size: \t" << streamSize << endl;
    cout << "Number of Threads :\t" << nThreads.x << "\t" << nThreads.y << "\t" << nThreads.z << endl;
    cout << "Number of Blocks :\t" << nBlocks.x << "\t" << nBlocks.y << "\t" << nBlocks.z << endl;

    // create cuda stream
    cudaStream_t streams[NUM_STREAMS];
    for(int i = 0; i < NUM_STREAMS; i++)
        checkCudaErrors(cudaStreamCreate(&streams[i]));

    // create cuda event handles
    cudaEvent_t start, stop;
    checkCudaErrors(cudaEventCreate(&start));
    checkCudaErrors(cudaEventCreate(&stop));

    cudaEventRecord(start, 0);

    for(int i = 0; i < NUM_STREAMS; i++)
    {
        int offset = i * streamSize;

        cudaMemcpyAsync(&d_in[offset], &h_in[offset], streamMemSize, cudaMemcpyHostToDevice,     streams[i]);

        dim3 subKernelBlock = dim3((int)ceil((float)nBlocks.x / 2));

        kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset], &d_out[offset],   streamSize/2);
        kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset + streamSize/2],    &d_out[offset +  streamSize/2], streamSize/2);

        cudaMemcpyAsync(&h_out[offset], &d_out[offset], streamMemSize, cudaMemcpyDeviceToHost,   streams[i]);
    }



    for(int i = 0; i < NUM_STREAMS; i++)
        checkCudaErrors(cudaStreamSynchronize(streams[i]));

    cudaEventRecord(stop, 0);

    checkCudaErrors(cudaStreamSynchronize(0));

    checkCudaErrors(cudaDeviceSynchronize());

    float gpu_time = 0;
    checkCudaErrors(cudaEventElapsedTime(&gpu_time, start, stop));


    // release resources
    checkCudaErrors(cudaEventDestroy(start));
    checkCudaErrors(cudaEventDestroy(stop));
    checkCudaErrors(cudaHostUnregister(h_in));
    checkCudaErrors(cudaHostUnregister(h_out));
    checkCudaErrors(cudaFree(d_in));
    checkCudaErrors(cudaFree(d_out));

    for(int i = 0; i < NUM_STREAMS; i++)
        checkCudaErrors(cudaStreamDestroy(streams[i]));

    cudaDeviceReset();  

    cout << "Execution Time of GPU: " << gpu_time << "ms" << endl;


    // GPU output check
    int sum = 0;
    for(int i = 0; i < dataSize; i++)      
        sum += h_groundTruth[i] - h_out[i];

    cout << "Error between CPU and GPU: " << sum << endl;

    delete[] h_in;
    delete[] h_out;
    delete[] h_groundTruth;

    return 0;
}
Другие вопросы по тегам