Проблема ложной зависимости для архитектуры Fermi
Я пытаюсь добиться "3
перекрытие "с помощью 3
потоки, как в примерах в потоках CUDA и параллельном вебинаре. Но я не смог этого достичь.
У меня Geforce GT 550M (архитектура Fermi с одним механизмом копирования), и я использую Windows 7 (64-разрядная версия).
Вот код, который я написал.
#include <iostream>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
// includes, project
#include "helper_cuda.h"
#include "helper_functions.h" // helper utility functions
#include <stdio.h>
using namespace std;
#define DATA_SIZE 6000000
#define NUM_THREADS 32
#define NUM_BLOCKS 16
#define NUM_STREAMS 3
__global__ void kernel(const int *in, int *out, int dataSize)
{
int start = blockIdx.x * blockDim.x + threadIdx.x;
int end = dataSize;
for (int i = start; i < end; i += blockDim.x * gridDim.x)
{
out[i] = in[i] * in[i];
}
}
int main()
{
const int dataSize = DATA_SIZE;
int *h_in = new int[dataSize];
int *h_out = new int[dataSize];
int *h_groundTruth = new int[dataSize];
// Input population
for(int i = 0; i < dataSize; i++)
h_in[i] = 5;
for(int i = 0; i < dataSize; i++)
h_out[i] = 0;
// CPU calculation for ground truth
for(int i = 0; i < dataSize; i++)
h_groundTruth[i] = h_in[i] * h_in[i];
// Choose which GPU to run on, change this on a multi-GPU system.
checkCudaErrors( cudaSetDevice(0) );
int *d_in = 0;
int *d_out = 0;
int streamSize = dataSize / NUM_STREAMS;
size_t memSize = dataSize * sizeof(int);
size_t streamMemSize = memSize / NUM_STREAMS;
checkCudaErrors( cudaMalloc( (void **)&d_in, memSize) );
checkCudaErrors( cudaMalloc( (void **)&d_out, memSize) );
// registers host memory as page-locked (required for asynch cudaMemcpyAsync)
checkCudaErrors(cudaHostRegister(h_in, memSize, cudaHostRegisterPortable));
checkCudaErrors(cudaHostRegister(h_out, memSize, cudaHostRegisterPortable));
// set kernel launch config
dim3 nThreads = dim3(NUM_THREADS,1,1);
dim3 nBlocks = dim3(NUM_BLOCKS,1,1);
cout << "GPU Kernel Configuration : " << endl;
cout << "Number of Streams :\t" << NUM_STREAMS << " with size: \t" << streamSize << endl;
cout << "Number of Threads :\t" << nThreads.x << "\t" << nThreads.y << "\t" << nThreads.z << endl;
cout << "Number of Blocks :\t" << nBlocks.x << "\t" << nBlocks.y << "\t" << nBlocks.z << endl;
// create cuda stream
cudaStream_t streams[NUM_STREAMS];
for(int i = 0; i < NUM_STREAMS; i++)
checkCudaErrors(cudaStreamCreate(&streams[i]));
// create cuda event handles
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
cudaEventRecord(start, 0);
// overlapped execution using version 2
for(int i = 0; i < NUM_STREAMS; i++)
{
int offset = i * streamSize;
cudaMemcpyAsync(&d_in[offset], &h_in[offset], streamMemSize, cudaMemcpyHostToDevice, streams[i]);
}
//cudaMemcpy(d_in, h_in, memSize, cudaMemcpyHostToDevice);
for(int i = 0; i < NUM_STREAMS; i++)
{
int offset = i * streamSize;
dim3 subKernelBlock = dim3((int)ceil((float)nBlocks.x / 2));
//kernel<<<nBlocks, nThreads, 0, streams[i]>>>(&d_in[offset], &d_out[offset], streamSize);
kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset], &d_out[offset], streamSize/2);
kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset + streamSize/2], &d_out[offset + streamSize/2], streamSize/2);
}
for(int i = 0; i < NUM_STREAMS; i++)
{
int offset = i * streamSize;
cudaMemcpyAsync(&h_out[offset], &d_out[offset], streamMemSize, cudaMemcpyDeviceToHost, streams[i]);
}
for(int i = 0; i < NUM_STREAMS; i++)
checkCudaErrors(cudaStreamSynchronize(streams[i]));
cudaEventRecord(stop, 0);
checkCudaErrors(cudaStreamSynchronize(0));
checkCudaErrors(cudaDeviceSynchronize());
float gpu_time = 0;
checkCudaErrors(cudaEventElapsedTime(&gpu_time, start, stop));
// release resources
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
checkCudaErrors(cudaHostUnregister(h_in));
checkCudaErrors(cudaHostUnregister(h_out));
checkCudaErrors(cudaFree(d_in));
checkCudaErrors(cudaFree(d_out));
for(int i = 0; i < NUM_STREAMS; i++)
checkCudaErrors(cudaStreamDestroy(streams[i]));
cudaDeviceReset();
cout << "Execution Time of GPU: " << gpu_time << "ms" << endl;
// GPU output check
int sum = 0;
for(int i = 0; i < dataSize; i++)
sum += h_groundTruth[i] - h_out[i];
cout << "Error between CPU and GPU: " << sum << endl;
delete[] h_in;
delete[] h_out;
delete[] h_groundTruth;
return 0;
}
Используя Nsight для профилирования, я получаю такой результат:
Это может показаться правильным, но почему передача D2H в потоке #1 начинается только при последнем запуске ядра потока #2, а не раньше? Я пытался также использовать 8
потоки (просто путем изменения NUM_STREAM
в 8
) чтобы достичь такого3
-перекрытие "и вот результат:
Интересно то, что когда я использую 8
потоки, перекрытия между вычислениями и передачей памяти, кажется, намного лучше.
В чем причина этой проблемы? Это из-за драйвера WDDM или что-то не так с моей программой?
1 ответ
Из вышеприведенных комментариев кажется, что проблема OP - это проблема ложной зависимости, которая пострадала от архитектуры Fermi и была решена с помощью функции Hyper-Q архитектуры Kepler.
Подводя итог, ОП подчеркивает тот факт, что первая передача D2H (поток #1) не начинается сразу после завершения последней H2D (поток #3), хотя в принципе это возможно. Промежуток времени выделен красным кружком на следующем рисунке (далее, но для указанного иначе все тесты относятся к GeForce GT540M, принадлежащему семейству Fermi):
Подход ФП - это подход в ширину, который работает по следующей схеме:
for(int i = 0; i < NUM_STREAMS; i++)
cudaMemcpyAsync(..., cudaMemcpyHostToDevice, streams[i]);
for(int i = 0; i < NUM_STREAMS; i++)
{
kernel_launch_1<<<..., 0, streams[i]>>>(...);
kernel_launch_2<<<..., 0, streams[i]>>>(...);
}
for(int i = 0; i < NUM_STREAMS; i++)
cudaMemcpyAsync(..., cudaMemcpyDeviceToHost, streams[i]);
Используя подход глубины, работающий по следующей схеме
for(int i = 0; i < NUM_STREAMS; i++)
{
cudaMemcpyAsync(...., cudaMemcpyHostToDevice, streams[i]);
kernel_launch_1<<<...., 0, streams[i]>>>(....);
kernel_launch_2<<<...., 0, streams[i]>>>(....);
cudaMemcpyAsync(...., cudaMemcpyDeviceToHost, streams[i]);
}
кажется, не улучшит ситуацию, согласно следующей временной шкале (код глубины первый указан в нижней части ответа), но он, кажется, показывает худшее перекрытие:
При подходе в ширину и комментировании запуска второго ядра первая копия D2H запускается немедленно, как только может, как сообщается в следующей временной шкале:
Наконец, при запуске кода на Kepler K20c проблема не обнаруживается, как показано на следующем рисунке:
Вот код для подхода глубины:
#include <iostream>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
// includes, project
#include "helper_cuda.h"
#include "helper_functions.h" // helper utility functions
#include <stdio.h>
using namespace std;
#define DATA_SIZE 6000000
#define NUM_THREADS 32
#define NUM_BLOCKS 16
#define NUM_STREAMS 3
__global__ void kernel(const int *in, int *out, int dataSize)
{
int start = blockIdx.x * blockDim.x + threadIdx.x;
int end = dataSize;
for (int i = start; i < end; i += blockDim.x * gridDim.x)
{
out[i] = in[i] * in[i];
}
}
int main()
{
const int dataSize = DATA_SIZE;
int *h_in = new int[dataSize];
int *h_out = new int[dataSize];
int *h_groundTruth = new int[dataSize];
// Input population
for(int i = 0; i < dataSize; i++)
h_in[i] = 5;
for(int i = 0; i < dataSize; i++)
h_out[i] = 0;
// CPU calculation for ground truth
for(int i = 0; i < dataSize; i++)
h_groundTruth[i] = h_in[i] * h_in[i];
// Choose which GPU to run on, change this on a multi-GPU system.
checkCudaErrors( cudaSetDevice(0) );
int *d_in = 0;
int *d_out = 0;
int streamSize = dataSize / NUM_STREAMS;
size_t memSize = dataSize * sizeof(int);
size_t streamMemSize = memSize / NUM_STREAMS;
checkCudaErrors( cudaMalloc( (void **)&d_in, memSize) );
checkCudaErrors( cudaMalloc( (void **)&d_out, memSize) );
// registers host memory as page-locked (required for asynch cudaMemcpyAsync)
checkCudaErrors(cudaHostRegister(h_in, memSize, cudaHostRegisterPortable));
checkCudaErrors(cudaHostRegister(h_out, memSize, cudaHostRegisterPortable));
// set kernel launch config
dim3 nThreads = dim3(NUM_THREADS,1,1);
dim3 nBlocks = dim3(NUM_BLOCKS,1,1);
cout << "GPU Kernel Configuration : " << endl;
cout << "Number of Streams :\t" << NUM_STREAMS << " with size: \t" << streamSize << endl;
cout << "Number of Threads :\t" << nThreads.x << "\t" << nThreads.y << "\t" << nThreads.z << endl;
cout << "Number of Blocks :\t" << nBlocks.x << "\t" << nBlocks.y << "\t" << nBlocks.z << endl;
// create cuda stream
cudaStream_t streams[NUM_STREAMS];
for(int i = 0; i < NUM_STREAMS; i++)
checkCudaErrors(cudaStreamCreate(&streams[i]));
// create cuda event handles
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
cudaEventRecord(start, 0);
for(int i = 0; i < NUM_STREAMS; i++)
{
int offset = i * streamSize;
cudaMemcpyAsync(&d_in[offset], &h_in[offset], streamMemSize, cudaMemcpyHostToDevice, streams[i]);
dim3 subKernelBlock = dim3((int)ceil((float)nBlocks.x / 2));
kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset], &d_out[offset], streamSize/2);
kernel<<<subKernelBlock, nThreads, 0, streams[i]>>>(&d_in[offset + streamSize/2], &d_out[offset + streamSize/2], streamSize/2);
cudaMemcpyAsync(&h_out[offset], &d_out[offset], streamMemSize, cudaMemcpyDeviceToHost, streams[i]);
}
for(int i = 0; i < NUM_STREAMS; i++)
checkCudaErrors(cudaStreamSynchronize(streams[i]));
cudaEventRecord(stop, 0);
checkCudaErrors(cudaStreamSynchronize(0));
checkCudaErrors(cudaDeviceSynchronize());
float gpu_time = 0;
checkCudaErrors(cudaEventElapsedTime(&gpu_time, start, stop));
// release resources
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
checkCudaErrors(cudaHostUnregister(h_in));
checkCudaErrors(cudaHostUnregister(h_out));
checkCudaErrors(cudaFree(d_in));
checkCudaErrors(cudaFree(d_out));
for(int i = 0; i < NUM_STREAMS; i++)
checkCudaErrors(cudaStreamDestroy(streams[i]));
cudaDeviceReset();
cout << "Execution Time of GPU: " << gpu_time << "ms" << endl;
// GPU output check
int sum = 0;
for(int i = 0; i < dataSize; i++)
sum += h_groundTruth[i] - h_out[i];
cout << "Error between CPU and GPU: " << sum << endl;
delete[] h_in;
delete[] h_out;
delete[] h_groundTruth;
return 0;
}