Трудно понять коиндукцию Агды
Я пытаюсь кодировать функциональную семантику для языка IMP с параллельным упреждающим планированием, как представлено в разделе 4 следующей статьи.
Я использую Agda 2.5.2 и стандартную библиотеку 0.13. Кроме того, весь код доступен в следующем разделе.
Прежде всего, я определил синтаксис рассматриваемого языка как индуктивные типы.
data Exp (n : ℕ) : Set where
$_ : ℕ → Exp n
Var : Fin n → Exp n
_⊕_ : Exp n → Exp n → Exp n
data Stmt (n : ℕ) : Set where
skip : Stmt n
_≔_ : Fin n → Exp n → Stmt n
_▷_ : Stmt n → Stmt n → Stmt n
iif_then_else_ : Exp n → Stmt n → Stmt n → Stmt n
while_do_ : Exp n → Stmt n → Stmt n
_∥_ : Stmt n → Stmt n → Stmt n
atomic : Stmt n → Stmt n
await_do_ : Exp n → Stmt n → Stmt n
Состояние - это просто вектор натуральных чисел, а семантика выражения проста.
σ_ : ℕ → Set
σ n = Vec ℕ n
⟦_,_⟧ : ∀ {n} → Exp n → σ n → ℕ
⟦ $ n , s ⟧ = n
⟦ Var v , s ⟧ = lookup v s
⟦ e ⊕ e' , s ⟧ = ⟦ e , s ⟧ + ⟦ e' , s ⟧
Затем я определил тип возобновлений, которые являются своего рода отложенными вычислениями.
data Res (n : ℕ) : Set where
ret : (st : σ n) → Res n
δ : (r : ∞ (Res n)) → Res n
_∨_ : (l r : ∞ (Res n)) → Res n
yield : (s : Stmt n)(st : σ n) → Res n
Далее, следуя 1, я определяю последовательное и параллельное выполнение операторов
evalSeq : ∀ {n} → Stmt n → Res n → Res n
evalSeq s (ret st) = yield s st
evalSeq s (δ r) = δ (♯ (evalSeq s (♭ r)))
evalSeq s (l ∨ r) = ♯ evalSeq s (♭ l) ∨ ♯ evalSeq s (♭ r)
evalSeq s (yield s' st) = yield (s ▷ s') st
evalParL : ∀ {n} → Stmt n → Res n → Res n
evalParL s (ret st) = yield s st
evalParL s (δ r) = δ (♯ evalParL s (♭ r))
evalParL s (l ∨ r) = ♯ evalParL s (♭ l) ∨ ♯ evalParL s (♭ r)
evalParL s (yield s' st) = yield (s ∥ s') st
evalParR : ∀ {n} → Stmt n → Res n → Res n
evalParR s (ret st) = yield s st
evalParR s (δ r) = δ (♯ evalParR s (♭ r))
evalParR s (l ∨ r) = ♯ evalParR s (♭ l) ∨ ♯ evalParR s (♭ r)
evalParR s (yield s' st) = yield (s' ∥ s) st
Все идет нормально. Далее мне нужно определить функцию оценки оператора совместно с операцией закрытия (выполнения приостановленных вычислений) при возобновлении.
mutual
close : ∀ {n} → Res n → Res n
close (ret st) = ret st
close (δ r) = δ (♯ close (♭ r))
close (l ∨ r) = ♯ close (♭ l) ∨ ♯ close (♭ r)
close (yield s st) = δ (♯ eval s st)
eval : ∀ {n} → Stmt n → σ n → Res n
eval skip st = ret st
eval (x ≔ e) st = δ (♯ (ret (st [ x ]≔ ⟦ e , st ⟧ )))
eval (s ▷ s') st = evalSeq s (eval s' st)
eval (iif e then s else s') st with ⟦ e , st ⟧
...| zero = δ (♯ yield s' st)
...| suc n = δ (♯ yield s st)
eval (while e do s) st with ⟦ e , st ⟧
...| zero = δ (♯ ret st)
...| suc n = δ (♯ yield (s ▷ while e do s) st )
eval (s ∥ s') st = (♯ evalParR s' (eval s st)) ∨ (♯ evalParL s (eval s' st))
eval (atomic s) st = {!!} -- δ (♯ close (eval s st))
eval (await e do s) st = {!!}
Проверка целостности Агды жалуется, когда я пытаюсь заполнить дыру в eval
уравнение для atomic
конструктор с δ (♯ close (eval s st))
говоря, что проверка завершения не удается для нескольких точек в обоих eval
а также close
функция.
Мои вопросы по этой проблеме:
1) Почему проверка завершения Agda жалуется на эти определения? Мне кажется, что вызов δ (♯ close (eval s st))
хорошо, так как это сделано на структурно меньшем утверждении.
2) В текущей языковой документации Агды говорится, что подобная музыкальная нотация, основанная на коиндукции, является "старой" коиндукцией в Агде. Он рекомендует использовать коиндуктивные записи и копаттерны. Я осмотрелся вокруг, но я не смог найти примеров copatterns за пределами потоков и монады задержки. Мой вопрос: возможно ли представить резюме с использованием коиндуктивных записей и копаттернов?
1 ответ
Способ убедить Agda в том, что это заканчивается, - использовать размерные типы. Таким образом, вы можете показать, что close x
по крайней мере так же четко, как x
,
Прежде всего, вот определение Res
на основе коиндуктивных записей и типоразмеров:
mutual
record Res (n : ℕ) {sz : Size} : Set where
coinductive
field resume : ∀ {sz' : Size< sz} → ResCase n {sz'}
data ResCase (n : ℕ) {sz : Size} : Set where
ret : (st : σ n) → ResCase n
δ : (r : Res n {sz}) → ResCase n
_∨_ : (l r : Res n {sz}) → ResCase n
yield : (s : Stmt n) (st : σ n) → ResCase n
open Res
Тогда вы можете доказать, что evalSeq
и друзья сохраняют размер:
evalStmt : ∀ {n sz} → (Stmt n → Stmt n → Stmt n) → Stmt n → Res n {sz} → Res n {sz}
resume (evalStmt _⊗_ s res) with resume res
resume (evalStmt _⊗_ s _) | ret st = yield s st
resume (evalStmt _⊗_ s _) | δ x = δ (evalStmt _⊗_ s x)
resume (evalStmt _⊗_ s _) | l ∨ r = evalStmt _⊗_ s l ∨ evalStmt _⊗_ s r
resume (evalStmt _⊗_ s _) | yield s' st = yield (s ⊗ s') st
evalSeq : ∀ {n sz} → Stmt n → Res n {sz} → Res n {sz}
evalSeq = evalStmt (\s s' → s ▷ s')
evalParL : ∀ {n sz} → Stmt n → Res n {sz} → Res n {sz}
evalParL = evalStmt (\s s' → s ∥ s')
evalParR : ∀ {n sz} → Stmt n → Res n {sz} → Res n {sz}
evalParR = evalStmt (\s s' → s' ∥ s)
И аналогично для close
:
mutual
close : ∀ {n sz} → Res n {sz} → Res n {sz}
resume (close res) with resume res
... | ret st = ret st
... | δ r = δ (close r)
... | l ∨ r = close l ∨ close r
... | yield s st = δ (eval s st)
А также eval
так же хорошо определен до любого размера:
eval : ∀ {n sz} → Stmt n → σ n → Res n {sz}
resume (eval skip st) = ret st
resume (eval (x ≔ e) st) = ret (st [ x ]≔ ⟦ e , st ⟧ )
resume (eval (s ▷ s') st) = resume (evalSeq s (eval s' st))
resume (eval (iif e then s else s') st) with ⟦ e , st ⟧
...| zero = yield s' st
...| suc n = yield s st
resume (eval (while e do s) st) with ⟦ e , st ⟧
...| zero = ret st
...| suc n = yield (s ▷ while e do s) st
resume (eval (s ∥ s') st) = evalParR s' (eval s st) ∨ evalParL s (eval s' st)
resume (eval (atomic s) st) = resume (close (eval s st)) -- or δ
resume (eval (await e do s) st) = {!!}