OpenCV- как получить лучший контур руки из некачественного серого изображения?

Мне нужно получить контур от изображения руки, обычно я обрабатываю изображение в 4 этапа:

  1. получить сырое RGB-серое изображение с 3 каналов на 1 канал:

    cvtColor(sourceGrayImage, sourceGrayImage, COLOR_BGR2GRAY);
    
  2. использовать размытие по Гауссу для фильтрации серого изображения:

    GaussianBlur(sourceGrayImage, sourceGrayImage, Size(3,3), 0);
    
  3. двоичное серое изображение, я делю изображение по высоте, обычно я делю изображение на 6 изображений по высоте, затем каждое делаю пороговый процесс:

    // we split source picture to binaryImageSectionCount(here it's 8) pieces by its height, 
    // then we for every piece, we do threshold, 
    // and at last we combine them agin to binaryImage        
    const binaryImageSectionCount = 8;
    void GetBinaryImage(Mat &grayImage, Mat &binaryImage)
    {
        // get every partial gray image's height
        int partImageHeight = grayImage.rows / binaryImageSectionCount;
        for (int i = 0; i < binaryImageSectionCount; i++)
        {
            Mat partialGrayImage;            
            Mat partialBinaryImage;
            Rect partialRect;
            if (i != binaryImageSectionCount - 1)
            {
                // if it's not last piece, Rect's height should be partImageHeight
                partialRect = Rect(0, i * partImageHeight, grayImage.cols, partImageHeight);
            }
            else
            {
                // if it's last piece, Rect's height should be (grayImage.rows - i  * partImageHeight)
                partialRect = Rect(0, i * partImageHeight, grayImage.cols, grayImage.rows - i  * partImageHeight);
            }
    
            Mat partialResource = grayImage(partialRect);    
            partialResource.copyTo(partialGrayImage);    
            threshold( partialGrayImage, partialBinaryImage, 0, 255, THRESH_OTSU);
    
            // combin partial binary image to one piece
            partialBinaryImage.copyTo(binaryImage(partialRect));
    
            ///*stringstream resultStrm;
            //resultStrm << "partial_" << (i + 1);
            //string string = resultStrm.str();
    
            //imshow(string, partialBinaryImage);
            //waitKey(0);*/
        }
        imshow("result binary image.", binaryImage);
        waitKey(0);
        return;
    }
    
  4. используйте findcontour, чтобы получить самый большой контур области:

    vector<vector<Point> > contours;        
    findContours(binaryImage, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
    

обычно это работает хорошо,но для некоторых серых изображений низкого качества это не работает, как показано ниже:

LowQualityGrayImage1

LowQualityGrayImage2

полный код здесь:

#include <opencv2/imgproc/imgproc.hpp>
#include<opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;
using namespace cv;


// we split source picture to binaryImageSectionCount(here it's 8) pieces by its height, 
// then we for every piece, we do threshold, 
// and at last we combine them agin to binaryImage        
const binaryImageSectionCount = 8;
void GetBinaryImage(Mat &grayImage, Mat &binaryImage)
{
    // get every partial gray image's height
    int partImageHeight = grayImage.rows / binaryImageSectionCount;
    for (int i = 0; i < binaryImageSectionCount; i++)
    {
        Mat partialGrayImage;            
        Mat partialBinaryImage;
        Rect partialRect;
        if (i != binaryImageSectionCount - 1)
        {
            // if it's not last piece, Rect's height should be partImageHeight
            partialRect = Rect(0, i * partImageHeight, grayImage.cols, partImageHeight);
        }
        else
        {
            // if it's last piece, Rect's height should be (grayImage.rows - i  * partImageHeight)
            partialRect = Rect(0, i * partImageHeight, grayImage.cols, grayImage.rows - i  * partImageHeight);
        }

        Mat partialResource = grayImage(partialRect);    
        partialResource.copyTo(partialGrayImage);    
        threshold( partialGrayImage, partialBinaryImage, 0, 255, THRESH_OTSU);

        // combin partial binary image to one piece
        partialBinaryImage.copyTo(binaryImage(partialRect));

        ///*stringstream resultStrm;
        //resultStrm << "partial_" << (i + 1);
        //string string = resultStrm.str();

        //imshow(string, partialBinaryImage);
        //waitKey(0);*/
    }
    imshow("result binary image.", binaryImage);
    waitKey(0);
    return;
}


int main(int argc, _TCHAR* argv[])
{   
    // get image path
    string imgPath("C:\\Users\\Alfred\\Desktop\\gray.bmp");     

    // read image
    Mat src = imread(imgPath);
    imshow("Source", src);        
    //medianBlur(src, src, 7);  
    cvtColor(src, src, COLOR_BGR2GRAY);     
    imshow("gray", src);    

    // do filter
    GaussianBlur(src, src, Size(3,3), 0);   

    // binary image
    Mat threshold_output(src.rows, src.cols, CV_8UC1, Scalar(0, 0, 0)); 
    GetBinaryImage(src, threshold_output);
    imshow("binaryImage", threshold_output);

    // get biggest contour
    vector<vector<Point> > contours;    
    findContours(threshold_output,contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
    int biggestContourIndex = 0;
    int maxContourArea = -1000;
    for (int i = 0; i < contours.size(); i++)
    {       
        if (contourArea(contours[i]) > maxContourArea)
        {
            maxContourArea = contourArea(contours[i]);
            biggestContourIndex = i;
        }
    }

    // show biggest contour
    Mat biggestContour(threshold_output.rows, threshold_output.cols, CV_8UC1, Scalar(0, 0, 0));
    drawContours(biggestContour, contours, biggestContourIndex, cv::Scalar(255,255,255), 2, 8, vector<Vec4i>(), 0, Point());
    imshow("maxContour", biggestContour);
    waitKey(0);

}

Кто-нибудь может помочь мне получить лучший результат контура руки? Спасибо!!!

1 ответ

У меня есть фрагмент кода в Python, вы можете использовать тот же подход в C:

img = cv2.imread(x, 1)
cv2.imshow("img",img)

imgray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",imgray)

#Code for histogram equalization
equ = cv2.equalizeHist(imgray)
cv2.imshow('equ', equ)

#Code for contrast limited adaptive histogram equalization
#clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
#cl2 = clahe.apply(imgray)
#cv2.imshow('clahe2', cl2)

Вот результат, который я получил:

Если ваше изображение ужасно плохое, вы можете попробовать код, который я прокомментировал, с использованием адаптивной эквализации гистограммы с ограниченной контрастностью.

Другие вопросы по тегам