Разложение по сингулярным значениям: разные результаты с Jama, PColt и NumPy

Я хочу выполнить разложение по сингулярным значениям на большой (разреженной) матрице. Чтобы выбрать лучшую (наиболее точную) библиотеку, я попытался воспроизвести приведенный здесь пример SVD, используя разные библиотеки Java и Python. Странно, я получаю разные результаты с каждой библиотекой.

Вот исходный пример матрицы и ее разложенные (U S и VT) матрицы:

A =2.0  0.0 8.0 6.0 0.0
   1.0 6.0 0.0 1.0 7.0
   5.0 0.0 7.0 4.0 0.0
   7.0 0.0 8.0 5.0 0.0 
   0.0 10.0 0.0 0.0 7.0

U =-0.54 0.07 0.82 -0.11 0.12
   -0.10 -0.59 -0.11 -0.79 -0.06
   -0.53 0.06 -0.21 0.12 -0.81
   -0.65 0.07 -0.51 0.06 0.56
   -0.06 -0.80 0.09 0.59 0.04

VT =-0.46 0.02 -0.87 -0.00 0.17
    -0.07 -0.76 0.06 0.60 0.23
    -0.74 0.10 0.28 0.22 -0.56
    -0.48 0.03 0.40 -0.33 0.70
    -0.07 -0.64 -0.04 -0.69 -0.32

S (with the top three singular values) = 
   17.92 0 0
   0 15.17 0
   0 0 3.56

Я пытался использовать следующие библиотеки Java и Python: Java: PColt, Jama Python: NumPy

Вот результаты каждого из них:

Jama:
U = 0.5423  -0.065  -0.8216 0.1057  -0.1245 
    0.1018  0.5935  0.1126  0.7881  0.0603  
    0.525   -0.0594 0.213   -0.1157 0.8137  
    0.6449  -0.0704 0.5087  -0.0599 -0.5628 
    0.0645  0.7969  -0.09   -0.5922 -0.0441 

VT =0.4646  -0.0215 0.8685  8.0E-4  -0.1713 
    0.0701  0.76    -0.0631 -0.6013 -0.2278 
    0.7351  -0.0988 -0.284  -0.2235 0.565   
    0.4844  -0.0254 -0.3989 0.3327  -0.7035 
    0.065   0.6415  0.0443  0.6912  0.3233  

S = 17.9184 0.0 0.0 0.0 0.0 
    0.0 15.1714 0.0 0.0 0.0 
    0.0 0.0 3.564   0.0 0.0 
    0.0 0.0 0.0 1.9842  0.0 
    0.0 0.0 0.0 0.0 0.3496  

PColt:
U = -0.542255   0.0649957  0.821617  0.105747  -0.124490 
    -0.101812  -0.593461 -0.112552  0.788123   0.0602700
    -0.524953   0.0593817 -0.212969 -0.115742   0.813724 
    -0.644870   0.0704063 -0.508744 -0.0599027 -0.562829 
    -0.0644952 -0.796930  0.0900097 -0.592195  -0.0441263

VT =-0.464617   0.0215065 -0.868509   0.000799554 -0.171349
    -0.0700860 -0.759988  0.0630715 -0.601346   -0.227841
    -0.735094   0.0987971  0.284009  -0.223485    0.565040
    -0.484392   0.0254474  0.398866   0.332684   -0.703523
    -0.0649698 -0.641520 -0.0442743  0.691201    0.323284

S = 
(00)    17.91837085874625
(11)    15.17137188041607
(22)    3.5640020352605677
(33)    1.9842281528992616
(44)    0.3495556671751232


Numpy

U = -0.54225536  0.06499573  0.82161708  0.10574661 -0.12448979
    -0.10181247 -0.59346055 -0.11255162  0.78812338  0.06026999
    -0.52495325  0.05938171 -0.21296861 -0.11574223  0.81372354
    -0.64487038  0.07040626 -0.50874368 -0.05990271 -0.56282918
    -0.06449519 -0.79692967  0.09000966 -0.59219473 -0.04412631

VT =-4.64617e-01   2.15065e-02  -8.68508e-01    7.99553e-04  -1.71349e-01
    -7.00859e-02  -7.59987e-01   6.30714e-02   -6.01345e-01  -2.27841e-01
    -7.35093e-01   9.87971e-02   2.84008e-01   -2.23484e-01   5.65040e-01
    -4.84391e-01   2.54473e-02   3.98865e-01    3.32683e-01  -7.03523e-01
    -6.49698e-02  -6.41519e-01  -4.42743e-02    6.91201e-01   3.23283e-01

S = 17.91837086  15.17137188   3.56400204   1.98422815   0.34955567

Как можно заметить, знак каждого элемента в разложенных матрицах Jama (u & VT) противоположен знакам в исходном примере. Интересно, что для PColt и Numpy только знаки элементов в последних двух столбцах инвертированы. Есть ли какая-то конкретная причина за перевернутыми знаками? Кто-нибудь сталкивался с подобными несоответствиями?

Вот фрагменты кода, которые я использовал: Java

import java.text.DecimalFormat;
import cern.colt.matrix.tdouble.DoubleMatrix2D;
import cern.colt.matrix.tdouble.algo.DenseDoubleAlgebra;
import cern.colt.matrix.tdouble.algo.decomposition.DenseDoubleSingularValueDecomposition;
import cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D;
import Jama.Matrix;
import Jama.SingularValueDecomposition;
public class SVD_Test implements java.io.Serializable{

    public static void main(String[] args)
    {   

        double[][] data2 = new double[][]
                {{ 2.0, 0.0, 8.0, 6.0, 0.0},
                { 1.0, 6.0, 0.0, 1.0, 7.0},
                { 5.0, 0.0, 7.0, 4.0, 0.0},
                { 7.0, 0.0, 8.0, 5.0, 0.0},
                { 0.0, 10.0, 0.0, 0.0, 7.0}};

        DoubleMatrix2D pColt_matrix = new DenseDoubleMatrix2D(5,5);
        pColt_matrix.assign(data2);
        Matrix j = new Matrix(data2);

        SingularValueDecomposition svd_jama = j.svd();

        DenseDoubleSingularValueDecomposition svd_pColt = new DenseDoubleSingularValueDecomposition(pColt_matrix, true, true);
        System.out.println("U:");
        System.out.println("pColt:");
        System.out.println(svd_pColt.getU());
        printJamaMatrix(svd_jama.getU());
        System.out.println("S:");
        System.out.println("pColt:");
        System.out.println(svd_pColt.getS());
        printJamaMatrix(svd_jama.getS());
        System.out.println("V:");
        System.out.println("pColt:");
        System.out.println(svd_pColt.getV());
        printJamaMatrix(svd_jama.getV());

    }

    public static void printJamaMatrix(Matrix inp){
        System.out.println("Jama: ");
        System.out.println(String.valueOf(inp.getRowDimension())+" X "+String.valueOf(inp.getColumnDimension()));
        DecimalFormat twoDForm = new DecimalFormat("#.####");
        StringBuffer sb = new StringBuffer();
        for (int r = 0; r < inp.getRowDimension(); r++) {
            for (int c = 0; c < inp.getColumnDimension(); c++)
                sb.append(Double.valueOf(twoDForm.format(inp.get(r, c)))).append("\t");
            sb.append("\n");
        }
        System.out.println(sb.toString());      
    }   
}

Python:

>>> import numpy
>>> numpy_matrix = numpy.array([[ 2.0, 0.0, 8.0, 6.0, 0.0], 
                [1.0, 6.0, 0.0, 1.0, 7.0], 
                [5.0, 0.0, 7.0, 4.0, 0.0], 
                [7.0, 0.0, 8.0, 5.0, 0.0], 
                [0.0, 10.0, 0.0, 0.0, 7.0]])
>>> u,s,v = numpy.linalg.svd(numpy_matrix, full_matrices=True)

Что-то не так с кодом?,

2 ответа

Ничего плохого: svd не является уникальным вплоть до смены знака столбцов U и V. (т.е. если вы измените знак i-го столбца U и i-го столбца V, у вас все еще будет действительный svd: A = U*S*V^T). Различные реализации svd будут давать немного разные результаты: чтобы проверить правильность svd, нужно вычислить норму (AU*S*V^T) / norm(A) и убедиться, что это небольшое число.

Нет ничего плохого. SVD преобразует пространство столбцов и пространство строк целевой матрицы в ортонормированные базисы таким образом, чтобы выровнять эти два пространства и учесть растяжения вдоль собственных векторов. Углы выравнивания могут быть уникальными, дискретным набором или континуумом, как показано ниже.

Например, с учетом двух углов t и p и целевой матрицы (см. Сноску)

A = ((1, -1), (2, 2))

Общее разложение

U = ((0, exp [ip]), (-exp [it], 0))

S = sqrt (2) ((2,0), (0,1))

V* = (1 / sqrt (2)) ((exp [it], exp [it]), (exp [ip], -exp [ip]))

Для восстановления целевой матрицы используйтеA = U S V*

Быстрая проверка качества ответа заключается в проверке длины единицы каждого вектора столбца как в U, так и в V.

Сноска. Матрицы представлены в основном формате строк. Таким образом, вектор первой строки в матрице A равен (1, -1).

  • Наконец, у меня достаточно очков, чтобы опубликовать файл изображения.

Пример, показывающий два свободных параметра в SVD

Другие вопросы по тегам