Постройте матрицу путаницы из модели Роберты
Я написал код классификации текста с двумя классами, используя модель Роберты, и теперь хочу нарисовать матрицу путаницы. Как приступить к построению матрицы путаницы на основе модели Роберты?
RobertaTokenizer = RobertaTokenizer.from_pretrained('roberta-base',do_lower_case=False)
roberta_model = TFRobertaForSequenceClassification.from_pretrained('roberta-base',num_labels=2)
input_ids=[]
attention_masks=[]
for sent in sentences:
bert_inp=RobertaTokenizer.encode_plus(sent,add_special_tokens = True,max_length =128,pad_to_max_length = True,return_attention_mask = True)
input_ids.append(bert_inp['input_ids'])
attention_masks.append(bert_inp['attention_mask'])
input_ids=np.asarray(input_ids)
attention_masks=np.array(attention_masks)
labels=np.array(labels)
#split
train_inp,val_inp,train_label,val_label,train_mask,val_mask=train_test_split(input_ids,labels,attention_masks,test_size=0.5)
print('Train inp shape {} Val input shape {}\nTrain label shape {} Val label shape {}\nTrain attention mask shape {} Val attention mask shape {}'.format(train_inp.shape,val_inp.shape,train_label.shape,val_label.shape,train_mask.shape,val_mask.shape))
#
log_dir='tensorboard_data/tb_roberta'
model_save_path='/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/callbacks.py'
callbacks = [tf.keras.callbacks.ModelCheckpoint(filepath=model_save_path,save_weights_only=True,monitor='val_loss',mode='min',save_best_only=True),keras.callbacks.TensorBoard(log_dir=log_dir)]
print('\nBert Model',roberta_model.summary())
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
optimizer = tf.keras.optimizers.Adam(learning_rate=2e-5,epsilon=1e-08)
roberta_model.compile(loss=loss,optimizer=optimizer,metrics=[metric])
history=roberta_model.fit([train_inp,train_mask],train_label,batch_size=16,epochs=2,validation_data=([val_inp,val_mask],val_label),callbacks=callbacks)
1 ответ
trained_model = TFRobertaForSequenceClassification.from_pretrained('roberta-base',num_labels=2)
trained_model.compile(loss=loss,optimizer=optimizer, metrics=[metric])
trained_model.load_weights(model_save_path)
preds = trained_model.predict([val_inp,val_mask],batch_size=16)
pred_labels = np.argmax(preds.logits, axis=1)
conf_matrix = confusion_matrix(labels2,pred_labels)
print('conf_matrix ',conf_matrix)
fig, ax = plt.subplots(figsize=(7.5, 7.5))
ax.matshow(conf_matrix, cmap=plt.cm.Blues, alpha=0.3)
for i in range(conf_matrix.shape[0]):
for j in range(conf_matrix.shape[1]):
ax.text(x=j, y=i,s=conf_matrix[i, j], va='center', ha='center', size='xx-large')
plt.xlabel('Predictions', fontsize=18)
plt.ylabel('Actuals', fontsize=18)
plt.title('Confusion Matrix(without preprocessing)', fontsize=18)
plt.show()