Как я могу навязать начальные условия дискретному PDE при использовании deSolve?
Я пытаюсь решить систему дифференциальных уравнений с одним ОДУ и одним УЧП второго порядка. Я дискретизировал PDE, чтобы решить его с помощью deSolve ode.1D, но теперь я не могу понять, как включить мои граничные условия для пространственной производной dE / dx. Существуют граничные значения для dE / dx при x = 0 и x = 1, которые важны для получения правильного решения. Как включить их в модель?
Мой код:
BVmod1D <- function(time, state, parms, N, dx) {
with(as.list(parms), {
E <- state[1 : N]
U <- state[(N + 1) : (2 * N)]
coef1 <- Sv * io / (Qox - Qred)
coef2 <- Tau * io / Cd
BV <- exp(aa * f * (E - 0.5 * (1 + U) )) - exp(-ac * f * (E - 0.5 * (1 + U)))
dEdx <- diff(c(E, E[N])) / dx # first spatial derivative of E
ddEddx <- diff(c(dEdx, dEdx[N])) / dx # second spatial derivative of E
dU <- coef1 * BV # dU/dt, Eqn 8
dE <- (ddEddx - (coef2 * BV)) / Tau # dE/dt, Eqn 12
return(list(c(dE, dU)))
})
}
pars <- c(Sv = 1.72e5,
io = 1.71e-6,
Qox = 1.56,
Qred = 0,
Tau = 3.79e-6,
Cd = 7.42e-8,
aa = 0.7674,
ac = 0.2326,
ks = 0.042992,
sig = 1.67e-6,
f = 38.92237)
R <- 1
N <- 50
dx <- R / N
Vo <- 0.5
# Initial and Boundary Conditions
yini <- rep(0, (2 * N))
yini[ 1 : N ] <- 2 * Vo
yini[ (N + 1) : (2 * N)]
times <- seq(0, 1 , by = 0.002 )
tail(out <- ode.1D(
y = yini,
times = times,
func = BVmod1D,
parms = pars,
nspec = 2,
N = N,
dx = dx
))