Соответствие шаблона с использованием cufft в CUDA?
Вот мой код, реализующий задачу сопоставления шаблона с использованием FFT, предоставленного в cufft. Логика ядра аналогична коду Matlab, представленному здесь:
Код Matlab:
clear all; close all;
template = rgb2gray(imread('possum_ear.jpg'));
background = rgb2gray(imread('possum.jpg'));
%% calculate padding
bx = size(background, 2);
by = size(background, 1);
tx = size(template, 2); % used for bbox placement
ty = size(template, 1);
%% fft
c = real(ifft2(fft2(background).*fft2(template, by, bx)));
%% find peak correlation
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = find(c == max(c(:)));
figure; surf(c), shading flat; % plot correlation
%% display best match
hFig = figure;
hAx = axes;
position = [xpeak(1) - tx, ypeak(1) - ty, tx, ty];
imshow(background, 'Parent', hAx);
imrect(hAx, position);
Мой код CUDA:
#include <iostream>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <math.h>
#include <chrono>
#include <math_functions.h>
#include <bitmap_image.hpp>
#include <cufft.h>
using namespace std;
#define errorHandler(stmt) \
do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
printf("[ERROR] Failed to run stmt %d, error body: %s\n", __LINE__, cudaGetErrorString(err)); \
return -1; } \
} while (0) \
#define M_PI 3.14159265
#define BLOCK_SIZE 1024
typedef float2 Complex;
int initiate_parallel_template_matching(bitmap_image, bitmap_image);
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
static __device__ __host__ inline Complex ComplexScale(Complex, float);
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
static __global__ void ComplexPointwiseMulAndScale(cufftComplex *, cufftComplex *, int, float);
// Padding functions
int PadData(const cufftComplex *signal, cufftComplex **padded_signal, int signal_size,
const cufftComplex *filter_kernel, cufftComplex **padded_filter_kernel, int filter_kernel_size);
int get_number_of_occurances(cufftComplex * arr, unsigned int size);
int main()
{
bitmap_image main_image("Input Files/collection.bmp");
bitmap_image template_image("Input Files/collection_coin.bmp");
initiate_parallel_template_matching(main_image, template_image);
system("pause");
return 0;
}
int initiate_parallel_template_matching(bitmap_image main_image, bitmap_image template_image)
{
// Get sizes
int main_width = main_image.width();
int main_height = main_image.height();
int main_size = main_width * main_height;
int template_width = template_image.width();
int template_height = template_image.height();
int template_size = template_width * template_height;
unsigned char* h_main_image = new unsigned char[3 * main_size];
for (int col = 0; col < main_width; col++) {
for (int row = 0; row < main_height; row++) {
rgb_t colors;
main_image.get_pixel(col, row, colors);
h_main_image[(row * main_width + col) * 3 + 0] = colors.red;
h_main_image[(row * main_width + col) * 3 + 1] = colors.green;
h_main_image[(row * main_width + col) * 3 + 2] = colors.blue;
}
}
unsigned char* h_template_image = new unsigned char[3 * template_size];
for (int col = 0; col < template_width; col++) {
for (int row = 0; row < template_height; row++) {
rgb_t colors;
template_image.get_pixel(col, row, colors);
h_template_image[(row * template_width + col) * 3 + 0] = colors.red;
h_template_image[(row * template_width + col) * 3 + 1] = colors.green;
h_template_image[(row * template_width + col) * 3 + 2] = colors.blue;
}
}
cufftComplex* h_main_signal = (cufftComplex *)malloc(sizeof(cufftComplex) * main_width * main_height * 3);
cufftComplex* h_template_signal = (cufftComplex *)malloc(sizeof(cufftComplex) * template_width * template_height * 3);
int main_signal_size = main_width * main_height * 3;
int template_signal_size = template_width * template_height * 3;
for (int y = 0; y < main_height; y++) {
for (int x = 0; x < main_width; x++) {
h_main_signal[(y * main_width + x) * 3 + 0].x = (double)h_main_image[(y * main_width + x) * 3 + 0];
h_main_signal[(y * main_width + x) * 3 + 1].x = (double)h_main_image[(y * main_width + x) * 3 + 1];
h_main_signal[(y * main_width + x) * 3 + 2].x = (double)h_main_image[(y * main_width + x) * 3 + 2];
h_main_signal[(y * main_width + x) * 3 + 0].y = 0;
h_main_signal[(y * main_width + x) * 3 + 1].y = 0;
h_main_signal[(y * main_width + x) * 3 + 2].y = 0;
}
}
for (int y = 0; y < template_height; y++) {
for (int x = 0; x < template_width; x++) {
h_template_signal[(y * template_width + x) * 3 + 0].x = (double)h_template_image[(y * template_width + x) * 3 + 0];
h_template_signal[(y * template_width + x) * 3 + 1].x = (double)h_template_image[(y * template_width + x) * 3 + 1];
h_template_signal[(y * template_width + x) * 3 + 2].x = (double)h_template_image[(y * template_width + x) * 3 + 2];
h_template_signal[(y * template_width + x) * 3 + 0].y = 0;
h_template_signal[(y * template_width + x) * 3 + 1].y = 0;
h_template_signal[(y * template_width + x) * 3 + 2].y = 0;
}
}
cufftComplex* d_main_signal;
cufftComplex* d_template_signal;
cufftComplex* d_main_signal_out;
cufftComplex* d_template_signal_out;
cufftComplex* d_inversed;
int main_memsize = sizeof(cufftComplex) * main_signal_size;
int template_memsize = sizeof(cufftComplex) * template_signal_size;
// Pad image signals
cufftComplex *h_padded_main_signal;
cufftComplex *h_padded_template_signal;
int NEW_SIZE = PadData(h_main_signal, &h_padded_main_signal, main_signal_size, h_template_signal, &h_padded_template_signal, template_signal_size);
errorHandler(cudaMalloc((void**)&d_main_signal, sizeof(cufftComplex) * NEW_SIZE));
errorHandler(cudaMalloc((void**)&d_template_signal, sizeof(cufftComplex) * NEW_SIZE));
errorHandler(cudaMalloc((void**)&d_main_signal_out, sizeof(cufftComplex) * NEW_SIZE));
errorHandler(cudaMalloc((void**)&d_template_signal_out, sizeof(cufftComplex) * NEW_SIZE));
errorHandler(cudaMalloc((void**)&d_inversed, sizeof(cufftComplex) * NEW_SIZE));
errorHandler(cudaMemcpy(d_main_signal, h_padded_main_signal, sizeof(cufftComplex) * NEW_SIZE, cudaMemcpyHostToDevice));
errorHandler(cudaMemcpy(d_template_signal, h_padded_template_signal, sizeof(cufftComplex) * NEW_SIZE, cudaMemcpyHostToDevice));
// Plan for 2 CUFFT_FORWARDs
cufftHandle plan_main;
cufftHandle plan_template;
cufftPlan1d(&plan_main, NEW_SIZE, CUFFT_C2C, 1);
cufftPlan1d(&plan_template, NEW_SIZE, CUFFT_C2C, 1);
// Perform forward FFT
cufftExecC2C(plan_main, (cufftComplex *)d_main_signal, (cufftComplex *)d_main_signal_out, CUFFT_FORWARD);
cufftExecC2C(plan_template, (cufftComplex *)d_template_signal, (cufftComplex *)d_template_signal_out, CUFFT_FORWARD);
// Multiply the coefficients together and normalize the result
printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");
dim3 gridDimensions((unsigned int)(ceil(NEW_SIZE / (float)BLOCK_SIZE)), 1, 1);
dim3 blockDimensions(BLOCK_SIZE, 1, 1);
ComplexPointwiseMulAndScale << <gridDimensions, blockDimensions >> >((cufftComplex *)d_main_signal_out, (cufftComplex *)d_template_signal_out, NEW_SIZE, 1.0f / NEW_SIZE);
errorHandler(cudaGetLastError());
// Perform the inverse fft on the main signal
cufftExecC2C(plan_main, (cufftComplex *)d_main_signal_out, (cufftComplex *)d_inversed, CUFFT_INVERSE);
// Copy data back to host
cufftComplex * h_correlation_signal;
h_correlation_signal = h_padded_main_signal;
errorHandler(cudaMemcpy(h_correlation_signal, d_inversed, sizeof(cufftComplex) * NEW_SIZE, cudaMemcpyDeviceToHost));
for (int i = 0; i < NEW_SIZE; i++) {
h_correlation_signal[i].x = abs(h_correlation_signal[i].x);
h_correlation_signal[i].y = abs(h_correlation_signal[i].y);
}
get_number_of_occurances(h_correlation_signal, NEW_SIZE);
// Cancel plans :))))
cufftDestroy(plan_main);
cufftDestroy(plan_template);
// Free allocated memory
errorHandler(cudaFree(d_main_signal));
errorHandler(cudaFree(d_template_signal));
errorHandler(cudaFree(d_main_signal_out));
errorHandler(cudaFree(d_template_signal_out));
free(h_main_image);
free(h_template_image);
free(h_main_signal);
free(h_template_signal);
free(h_padded_main_signal);
free(h_padded_template_signal);
return EXIT_SUCCESS;
}
///////////////////////////////////////////////////////////////////////////////////
// Function for padding original data
//////////////////////////////////////////////////////////////////////////////////
int PadData(const cufftComplex *signal, cufftComplex **padded_signal, int signal_size,
const cufftComplex *filter_kernel, cufftComplex **padded_filter_kernel, int filter_kernel_size)
{
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
int new_size = signal_size + maxRadius;
// Pad signal
cufftComplex *new_data = (cufftComplex *)malloc(sizeof(cufftComplex) * new_size);
memcpy(new_data + 0, signal, signal_size * sizeof(cufftComplex));
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(cufftComplex));
*padded_signal = new_data;
// Pad filter
new_data = (cufftComplex *)malloc(sizeof(cufftComplex) * new_size);
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(cufftComplex));
memset(new_data + maxRadius, 0, (new_size - filter_kernel_size) * sizeof(cufftComplex));
memcpy(new_data + new_size - minRadius, filter_kernel, minRadius * sizeof(cufftComplex));
*padded_filter_kernel = new_data;
return new_size;
}
////////////////////////////////////////////////////////////////////////////////
// Complex operations
////////////////////////////////////////////////////////////////////////////////
// Complex addition
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b)
{
Complex c;
c.x = a.x + b.x;
c.y = a.y + b.y;
return c;
}
// Complex scale
static __device__ __host__ inline Complex ComplexScale(Complex a, float s)
{
Complex c;
c.x = s * a.x;
c.y = s * a.y;
return c;
}
// Complex multiplication
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b)
{
Complex c;
c.x = a.x * b.x - a.y * b.y;
c.y = a.x * b.y + a.y * b.x;
return c;
}
// Complex pointwise multiplication
static __global__ void ComplexPointwiseMulAndScale(cufftComplex *a, cufftComplex *b, int size, float scale)
{
const int numThreads = blockDim.x * gridDim.x;
const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = threadID; i < size; i += numThreads)
{
a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);
}
}
int get_number_of_occurances(cufftComplex * arr, unsigned int size)
{
cufftComplex max = arr[0];
int num_of_occurs = 0;
for (unsigned int i = 1; i < size; i++) {
if (arr[i].x > max.x && arr[i].y > max.y) {
num_of_occurs = 1;
max = arr[i];
}
if (arr[i].x == max.x && arr[i].y == max.y)
num_of_occurs++;
}
wcout << "[Number of Occurances]: " << num_of_occurs << endl;
return num_of_occurs;
}
Это может быть слишком длинным, но основная логика на самом деле та же самая, и большая часть кода предназначена для распределения и т. Д. Я использую ЭТИ две картинки, чтобы проверить, верен ли результат, и я получаю 2 вхождения монеты. Шаблон в основной коллекции. Мой вопрос в основном две вещи;
- Правильна ли приведенная выше логика для поиска шаблона внутри изображения? И если да, каков наилучший способ реализовать это с помощью cufft?
- Я что-то упустил в своем коде?
Примечание: библиотека bitmap_image должна быть включена для работы!
Примечание: пожалуйста, помогите мне понять логику этой программы. Нет необходимости отлаживать это для меня