Оптимизация гиперпараметров в pytorch (в настоящее время с sklearn GridSearchCV)

Я использую этот ( ссылка) учебник по pytorch и хочу добавить в него функцию поиска по сетке,sklearn.model_selection.GridSearchCV (ссылка), чтобы оптимизировать гиперпараметры. Мне сложно понять, какими должны быть X и Y в gs.fit(x,y); согласно документации ( ссылка) x и y должны иметь следующую структуру, но мне сложно понять, как их убрать из кода. Выходные данные класса PennFudanDataset возвращают img и target в форме, которая не соответствует требованиям X, Y I. Находятся ли n_samples, n_features в следующем блоке кода или в блоке учебника, относящемся к модели?

fit(X, y=None, *, groups=None, **fit_params)[source]

Run fit with all sets of parameters.

Параметры

Xarray-like of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and n_features is the number of features.

yarray-like of shape (n_samples, n_output) or (n_samples,), default=None
Target relative to X for classification or regression; None for unsupervised learning.

Есть ли что-то еще, что мы могли бы использовать вместо этого, что легче реализовать для этого конкретного урока? Я читал о Ray Tune( ссылка), optuna( ссылка) и т.д., но они кажутся более сложными, чем это. В настоящее время я также изучаю scipy.optimize.brute( ссылка), который кажется более простым.

PennFundanDataset класс:

import os
import numpy as np
import torch
from PIL import Image


class PennFudanDataset(object):
def __init__(self, root, transforms):
    self.root = root
    self.transforms = transforms
    # load all image files, sorting them to
    # ensure that they are aligned
    self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
    self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

def __getitem__(self, idx):
    # load images ad masks
    img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
    mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
    img = Image.open(img_path).convert("RGB")
    # note that we haven't converted the mask to RGB,
    # because each color corresponds to a different instance
    # with 0 being background
    mask = Image.open(mask_path)
    # convert the PIL Image into a numpy array
    mask = np.array(mask)
    # instances are encoded as different colors
    obj_ids = np.unique(mask)
    # first id is the background, so remove it
    obj_ids = obj_ids[1:]

    # split the color-encoded mask into a set
    # of binary masks
    masks = mask == obj_ids[:, None, None]

    # get bounding box coordinates for each mask
    num_objs = len(obj_ids)
    boxes = []
    for i in range(num_objs):
        pos = np.where(masks[i])
        xmin = np.min(pos[1])
        xmax = np.max(pos[1])
        ymin = np.min(pos[0])
        ymax = np.max(pos[0])
        boxes.append([xmin, ymin, xmax, ymax])

    # convert everything into a torch.Tensor
    boxes = torch.as_tensor(boxes, dtype=torch.float32)
    # there is only one class
    labels = torch.ones((num_objs,), dtype=torch.int64)
    masks = torch.as_tensor(masks, dtype=torch.uint8)

    image_id = torch.tensor([idx])
    area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
    # suppose all instances are not crowd
    iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

    target = {}
    target["boxes"] = boxes
    target["labels"] = labels
    target["masks"] = masks
    target["image_id"] = image_id
    target["area"] = area
    target["iscrowd"] = iscrowd

    if self.transforms is not None:
        img, target = self.transforms(img, target)

    return img, target

def __len__(self):
    return len(self.imgs)

0 ответов

Другие вопросы по тегам