Как спрогнозировать собственное изображение с помощью обученной модели ориентира?
Обученный ориентир с tenorflow и get loss 0.0022 и val_loss 0.0018, что было очень хорошей точностью. Всего для обучения было использовано 7000 изображений. Теперь я хотел предсказать с помощью собственного изображения, как мне преобразовать собственное изображение в массив, чтобы предсказать, используя модель. Ниже приведен код, используемый для прогнозирования исходных тестовых изображений.
X.shape = 7000,96,96Y.shape = 7000,8
Ytrain_pred = model.predict(Xtrain)
Ytest_pred = model.predict(Xtest)
n = 0
nrows = 4
ncols = 4
irand=np.random.choice(Ytest.shape[0],nrows*ncols)
fig, ax = plt.subplots(nrows,ncols,sharex=True,sharey=True,figsize=[ncols*2,nrows*2])
for row in range(nrows):
for col in range(ncols):
ax[row,col].imshow(Xtest[irand[n],:,:], cmap='gray')
ax[row,col].scatter(Ytest[irand[n],0::2]*96,Ytest[irand[n],1::2]*96,marker='X',c='r',s=100)
ax[row,col].scatter(Ytest_pred[irand[n],0::2]*96,Ytest_pred[irand[n],1::2]*96,marker='+',c='b',s=100)
ax[row,col].set_xticks(())
ax[row,col].set_yticks(())
ax[row,col].set_title('image index = %d' %(irand[n]),fontsize=10)
n += 1
сводка модели
Layer (type) Output Shape Param #
=================================================================
conv1d_6 (Conv1D) (None, 96, 32) 15392
_________________________________________________________________
max_pooling1d_6 (MaxPooling1 (None, 48, 32) 0
_________________________________________________________________
dropout_11 (Dropout) (None, 48, 32) 0
_________________________________________________________________
flatten_6 (Flatten) (None, 1536) 0
_________________________________________________________________
dense_11 (Dense) (None, 256) 393472
_________________________________________________________________
dropout_12 (Dropout) (None, 256) 0
_________________________________________________________________
dense_12 (Dense) (None, 8) 2056
=================================================================
Total params: 410,920
Trainable params: 410,920
Non-trainable params: 0
_________________________________________________________________