Потери не уменьшаются для двоичной классификации

Я пытаюсь реализовать двоичную классификацию. У меня есть набор данных изображения 100K (3 канала, 224 x 224 пикселей с предварительно измененным размером), который я пытаюсь обучить модели, если изображение безопасно для работы или нет. Я инженер по обработке данных со статистическим образованием, поэтому работаю над моделью последние 5-10 дней. Я пытался реализовать решения на основе предложений, но, к сожалению, потери не уменьшились.

Вот класс, реализованный с помощью PyTorch Lightning,

from .dataset import CloudDataset
from .split import DatasetSplit
from pytorch_lightning import LightningModule
from pytorch_lightning.metrics import Accuracy
from torch import stack
from torch.nn import BCEWithLogitsLoss, Conv2d, Dropout, Linear, MaxPool2d, ReLU
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
from torchvision.transforms import ToTensor
from util import logger
from util.config import config


class ClassifyModel(LightningModule):
    def __init__(self):
        super(ClassifyModel, self).__init__()

        # custom dataset split class
        ds = DatasetSplit(config.s3.bucket, config.train.ratio)

        # split records for train, validation and test
        self._train_itr, self._valid_itr, self._test_itr = ds.split()

        self.conv1 = Conv2d(3, 32, 3, padding=1)
        self.conv2 = Conv2d(32, 64, 3, padding=1)
        self.conv3 = Conv2d(64, 64, 3, padding=1)

        self.pool = MaxPool2d(2, 2)

        self.fc1 = Linear(7 * 28 * 64, 512)
        self.fc2 = Linear(512, 16)
        self.fc3 = Linear(16, 4)
        self.fc4 = Linear(4, 1)

        self.dropout = Dropout(0.25)

        self.relu = ReLU(inplace=True)

        self.accuracy = Accuracy()

    def forward(self, x):
        # comments are shape before execution
        # [32, 3, 224, 224]
        x = self.pool(self.relu(self.conv1(x)))
        # [32, 32, 112, 112]
        x = self.pool(self.relu(self.conv2(x)))
        # [32, 64, 56, 56]
        x = self.pool(self.relu(self.conv3(x)))
        # [32, 64, 28, 28]
        x = self.pool(self.relu(self.conv3(x)))
        # [32, 64, 14, 14]
        x = self.dropout(x)

        # [32, 64, 14, 14]
        x = x.view(-1, 7 * 28 * 64)

        # [32, 12544]
        x = self.relu(self.fc1(x))
        # [32, 512]
        x = self.relu(self.fc2(x))
        # [32, 16]
        x = self.relu(self.fc3(x))
        # [32, 4]
        x = self.dropout(self.fc4(x))

        # [32, 1]
        x = x.squeeze(1)
        # [32]
        return x

    def configure_optimizers(self):
        return Adam(self.parameters(), lr=0.001)

    def training_step(self, batch, batch_idx):
        image, target = batch
        target = target.float()

        output = self.forward(image)

        loss = BCEWithLogitsLoss()
        output = loss(output, target)

        logits = self(image)
        self.accuracy(logits, target)

        return {'loss': output}

    def validation_step(self, batch, batch_idx):
        image, target = batch
        target = target.float()

        output = self.forward(image)

        loss = BCEWithLogitsLoss()
        output = loss(output, target)

        return {'val_loss': output}

    def collate_fn(self, batch):
        batch = list(filter(lambda x: x is not None, batch))
        return default_collate(batch)

    def train_dataloader(self):
        transform = ToTensor()
        workers = 0 if config.train.test else config.train.workers

        # custom data set class that read files from s3
        cds = CloudDataset(config.s3.bucket, self._train_itr, transform)

        return DataLoader(
            dataset=cds,
            batch_size=32,
            shuffle=True,
            num_workers=workers,
            collate_fn=self.collate_fn,
        )

    def val_dataloader(self):
        transform = ToTensor()
        workers = 0 if config.train.test else config.train.workers

        # custom data set class that read files from s3
        cds = CloudDataset(config.s3.bucket, self._valid_itr, transform)

        return DataLoader(
            dataset=cds,
            batch_size=32,
            num_workers=workers,
            collate_fn=self.collate_fn,
        )

    def test_dataloader(self):
        transform = ToTensor()
        workers = 0 if config.train.test else config.train.workers

        # custom data set class that read files from s3
        cds = CloudDataset(config.s3.bucket, self._test_itr, transform)

        return DataLoader(
            dataset=cds,
            batch_size=32,
            shuffle=True,
            num_workers=workers,
            collate_fn=self.collate_fn,
        )

    def validation_epoch_end(self, outputs):
        avg_loss = stack([x['val_loss'] for x in outputs]).mean()

        logger.info(f'Validation loss is {avg_loss}')

    def training_epoch_end(self, outs):
        accuracy = self.accuracy.compute()

        logger.info(f'Training accuracy is {accuracy}')

Вот пользовательский вывод журнала,

epoch 0
Validation loss is 0.5988735556602478
Training accuracy is 0.4441356360912323

epoch 1
Validation loss is 0.6406065225601196
Training accuracy is 0.4441356360912323

epoch 2
Validation loss is 0.621654748916626
Training accuracy is 0.443579763174057

epoch 3
Validation loss is 0.5089989304542542
Training accuracy is 0.4580322504043579

epoch 4
Validation loss is 0.5484663248062134
Training accuracy is 0.4886047840118408

epoch 5
Validation loss is 0.5552918314933777
Training accuracy is 0.6142301559448242

epoch 6
Validation loss is 0.661466121673584
Training accuracy is 0.625903308391571

Проблема может быть связана с оптимизатором или функцией потерь, но я не мог понять.

0 ответов

Другие вопросы по тегам