Кажется, не удается заставить NLsolve сходиться в Джулии. Вы можете дать какие-нибудь советы?
Я пытаюсь решить проблему жизненного цикла в экономике с помощью Джулии, но у меня проблемы с NLsolve. Модель сводится к попытке решить систему уравнений два-два, чтобы найти оптимальные часы досуга и основной капитал для каждого рабочего периода. Экономический агент после выхода на пенсию устанавливает досуг = 1, и мне нужно только решить одно нелинейное уравнение для капитала. Эта часть работает нормально. Это решение системы двух уравнений, которая, кажется, не работает.
Поскольку я новичок в Джулии / программировании в целом, любые советы будут очень полезны. Также мы будем очень признательны за советы / замечания / рекомендации по всем аспектам кода. Модель решается в обратном направлении от последнего временного периода.
Моя попытка
using Parameters
using Roots
using Plots
using NLsolve
using ForwardDiff
Model = @with_kw (α = 0.66,
δ = 0.02,
τ = 0.015,
β = 1/1.01,
T = 70,
Ret = 40,
);
function du_c(c, l, η=2, γ=2)
if c>0 && l>0
return (c+1e-6)^(-η) * l^((1-η)*γ)
else
return Inf
end
end
function du_l(c, l, η=2, γ=2)
if l>0 && c>0
return γ * (c+1e-6)^(1-η) * l^(γ*(1-η)-1)
else
return Inf
end
end
function create_euler_work(x, y, m, k, l, r, w, t)
# x = todays capital, y = leisure
@unpack α, β, τ, δ, T, Ret = m
c_1 = x*(1+r) + (1-τ)*w*(1-y) - k[t+1]
c_2 = k[t+1]*(1+r) + (1-τ)*w*(1-l[t+1]) - k[t+2]
return du_c(c_1,y) - β*(1+r)*du_c(c_2,l[t+1])
end
function create_euler_retire(x, m, k, r, b, t)
# Holds at time periods Ret onwards
@unpack α, β, τ, δ, T, Ret = m
c_1 = x*(1+r) + b - k[t+1]
c_2 = k[t+1]*(1+r) + b - k[t+2]
return du_c(c_1,1) - β*(1+r)*du_c(c_2,1)
end
function create_euler_lyw(x, y, m, k, r, w, b, t)
# x = todays capital, y = leisure
@unpack α, β, τ, δ, T, Ret = m
c_1 = x*(1+r) + (1-τ)*w*(1-y) - k[t+1]
c_2 = k[t+1]*(1+r) + b - k[t+2]
return du_c(c_1,y) - β*(1+r)*du_c(c_2,1)
end
function create_foc(x, y, m, k, r, w, t)
# x = todays capital, l= leisure
@unpack α, β, τ, δ, T = m
c = x*(1+r) + (1-τ)*w*(1-y) - k[t+1]
return du_l(c,y) - (1-τ)*w*du_c(c,y)
end
function life_cycle(m, guess, r, w, b, initial)
@unpack α, β, τ, δ, T, Ret = m
k = zeros(T+1);
l = zeros(T);
k[T] = guess
println("Period t = $(T+1) Retirment, k = $(k[T+1]), l.0 = NA")
println("Period t = $T Retirment, k = $(k[T]), l = 1.0")
########################## Retirment ################################
for t in T-1:-1:Ret+1
euler(x) = create_euler_retire(x, m, k, r, b, t)
k[t] = find_zero(euler, (0,100))
l[t] = 1
println("Period t = $t Retirment, k = $(k[t]), l = $(l[t])")
end
###################### Retirement Year #############################
for t in Ret:Ret
euler(x,y) = create_euler_lyw(x, y, m, k, r, w, b, t)
foc(x,y) = create_foc(x, y, m, k, r, w, t)
function f!(F, x)
F[1] = euler(x[1], x[2])
F[2] = foc(x[1], x[2])
end
res = nlsolve(f!, [5; 0.7], autodiff = :forward)
k[t] = res.zero[1]
l[t] = res.zero[2]
println("Period t = $t Working, k = $(k[t]), l = $(l[t])")
end
############################ Working ###############################
for t in Ret-1:-1:1
euler(x,y) = create_euler_work(x, y, m, k, l, r, w, t)
foc(x,y) = create_foc(x, y, m, k, r, w, t)
function f!(F, x)
F[1] = euler(x[1], x[2])
F[2] = foc(x[1], x[2])
end
res = nlsolve(f!, [5; 0.7], autodiff = :forward)
k[t] = res.zero[1]
l[t] = res.zero[2]
println("Period t = $t Working, k = $(k[t]), l = $(l[t])")
end
#####################################################################
return k[1] - initial, k, l
end
m = Model();
residual, k, l = life_cycle(m, 0.3, 0.03, 1.0, 0.0, 0.0)
Код, кажется, прерывается на периоде 35 с ошибкой "Во время разрешения нелинейной системы оценка следующих уравнений привела к не конечному числу: [1,2]" Однако решения кажутся странными на периоде 37.