Живые графики в реальном времени в Jupyter Notebook
Я только начал изучать Python для построения графиков в реальном времени. Я пробовал решения, представленные в stackru, но ни одно из них не работает. Ниже мой код, и он не работает. Пожалуйста помоги
import numpy as np
import matplotlib.pyplot as plt
import pyautogui as pg
from matplotlib.animation import FuncAnimation
%matplotlib notebook
binSize = 512
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
def animate(i):
try:
while True:
x, y = pg.position()
f.append(x)
except KeyboardInterrupt:
print('')
# f.append(15)
if len(f)<binSize :
plt.cla()
plt.plot(f, color='c',LineWidth=1.5,label="Noisy")
else:
plt.cla()
plt.plot(f[-binSize:],color='c',LineWidth=1.5,label="Noisy")
ani = FuncAnimation(plt.gcf(),animate,interval=1);
Итак, я обновил код и попытался нарисовать два подзаговора, но через некоторое время
- Верхний график перестал очищать холст (координаты X мыши)
- Нижний график перестал обновлять график (БПФ)
- Когда объем данных превышает размер binSize, ноутбук зависает и графики обновляются очень медленно
%matplotlib notebook
binSize = 256
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
t = 0
dt = 1
fig,axs = plt.subplots(2,1)
def animate(i):
x, y = pg.position()
f.append(x)
n = len(f)
if n<binSize :
plt.sca(axs[0])
plt.cla()
plt.plot(f, color='c',LineWidth=1.5,label="MOUSE")
else:
fhat = np.fft.fft(f,binSize)
PSD = fhat*np.conj(fhat)/binSize
freq = (1/(dt*binSize))*np.arange(binSize)
L = np.arange(1,np.floor(binSize/2),dtype='int')
# update the code third time
axs[0].clear()
axs[0].plot(f[-binSize:], color='c',LineWidth=1.5,label="MOUSE")
# axs[0].xlim(0,binSize) # this stopped the FFT graph to be plotted
# plt.cla()
axs[1].clear()
axs[1].plot(freq[L],PSD[L],color='r',LineWidth=2,label="FFT")
# plt.xlim(t[0],t[-1])
# plt.legend()
# plt.sca(axs[1])
# plt.plot(freq[L],PSD[L],color='c',LineWidth=2,label="Mouse FFT")
# plt.xlim(0,300)
# plt.legend()
# plt.cla()
# plt.plot(f[-binSize:],color='c',LineWidth=1.5,label="Mouse")
ani = FuncAnimation(plt.gcf(),animate,interval=dt)
2 ответа
Чтобы сделать это быстрее, вы можете уменьшить данные, как в другом ответе
f.pop(0)
Я также использую другой метод обновления сюжета, который на моем компьютере работает намного быстрее.
Я создаю пустые участки на старте
# needs `,` to get first element from list
p1, = axs[0].plot([], [], color='c', LineWidth=1.5, label="MOUSE")
p2, = axs[1].plot([], [], color='r', LineWidth=2, label="FFT")
а позже обновлять данные только на графиках без clear()
а также plot()
еще раз
xdata = range(len(f))
ydata = f
p1.set_data(xdata, ydata)
а также
# replace data in plot
xdata = range(binSize)
ydata = f[-binSize:]
p1.set_data(xdata, ydata)
#p1.set_xdata(xdata)
#p1.set_ydata(ydata)
# replace data in plot
xdata = freq[:(binSize//2)]
ydata = PSD[:(binSize//2)]
p2.set_data(xdata, ydata)
Достаточно только запустить код, который масштабирует график
# rescale view
axs[0].relim()
axs[0].autoscale_view(True,True,True)
axs[1].relim()
axs[1].autoscale_view(True,True,True)
animate()
также должен вернуть новые участки
# return plots
return p1, p2
А также FuncAnimation()
должен убить их
ani = FuncAnimation(..., blit=True)
РЕДАКТИРОВАТЬ:
Анимация работает намного, намного быстрее, потому что я запускаю ее как обычно python script.py
, не в Jupuyter Notebook
РЕДАКТИРОВАТЬ:
когда я бегу нормально, я обнаружил одну проблему, которую смог найти решение: он не обновляет значения / отметки на осях. Jupyter Notebook
нет этой проблемы.
import numpy as np
import matplotlib.pyplot as plt
import pyautogui as pg
from matplotlib.animation import FuncAnimation
%matplotlib notebook
binSize = 256
f = []
t = 0
dt = 1
fig, axs = plt.subplots(2, 1)
# needs `,` to get first element from list
p1, = axs[0].plot([], [], color='c', LineWidth=1.5, label="MOUSE")
p2, = axs[1].plot([], [], color='r', LineWidth=2, label="FFT")
freq = np.arange(binSize)/(dt*binSize)
def animate(i):
x, y = pg.position()
n = len(f)
if n < binSize :
f.append(x)
# replace data in plot
xdata = range(len(f))
ydata = f
p1.set_data(xdata, ydata)
#p1.set_xdata(xdata)
#p1.set_ydata(ydata)
else:
f.pop(0)
f.append(x)
fhat = np.fft.fft(f, binSize)
PSD = fhat * np.conj(fhat) / binSize
# replace data in plot
#xdata = range(binSize)
ydata = f[-binSize:]
#p1.set_data(xdata, ydata)
#p1.set_xdata(xdata)
p1.set_ydata(ydata)
# replace data in plot
xdata = freq[:(binSize//2)]
ydata = PSD[:(binSize//2)]
p2.set_data(xdata, ydata)
# rescale view
axs[0].relim()
axs[0].autoscale_view(True,True,True)
axs[1].relim()
axs[1].autoscale_view(True,True,True)
# return plots
return p1, p2
ani = FuncAnimation(plt.gcf(), animate, interval=dt, blit=True)
plt.show()
Вы должны попробовать это. Вместо очистки plt clear axs[0] и так далее. Кроме того, вместо построения на plt.plot, строите на axs[0].plot
%matplotlib notebook
binSize = 256
# fig(ax1,ax2) = plt.subplots(2,figsize=(12,6))
f = []
t = 0
dt = 1
fig,axs = plt.subplots(2,1)
plt.sca(axs[0])
plt.sca(axs[1])
def animate(i):
x, y = pg.position()
n = len(f)
if n<binSize :
f.append(x*100)
axs[0].clear()
axs[0].plot(f, color='c',LineWidth=1.5,label="MOUSE")
else:
f.pop(0)
f.append(x)
fhat = np.fft.fft(f,binSize)
PSD = fhat*np.conj(fhat)/binSize
freq = (1/(dt*binSize))*np.arange(binSize)
L = np.arange(1,np.floor(binSize/2),dtype='int') # index array of [1,2,3..... binsize/2] type int
axs[0].clear()
axs[0].plot(f[-binSize:], color='c',LineWidth=1.5,label="MOUSE")
axs[1].clear()
axs[1].plot(freq[L],PSD[L],color='r',LineWidth=2,label="FFT")
ani = FuncAnimation(plt.gcf(),animate,interval=dt)
plt.show()