Точечные графики отфильтрованных оценок для моделей множественной регрессии
Я пытаюсь построить точечный график доверительных интервалов для 4 разных регрессионных моделей.
Данные доступны здесь.
#first importing data
Q1<-read.table("~/Q1.txt", header=T)
# Optionally, read in data directly from figshare.
# Q1 <- read.table("https://ndownloader.figshare.com/files/13283882?private_link=ace5b44bc12394a7c46d", header=TRUE)
library(dplyr)
#splitting into female and male
female<-Q1 %>%
filter(sex=="F")
male<-Q1 %>%
filter(sex=="M")
library(lme4)
#Female models
#poisson regression
ab_f_LBS= lmer(LBS ~ ft + grid + (1|byear), data = subset(female))
#negative binomial regression
ab_f_surv= glmer.nb(age ~ ft + grid + (1|byear), data = subset(female), control=glmerControl(tol=1e-6,optimizer="bobyqa",optCtrl=list(maxfun=1e19)))
#Male models
#poisson regression
ab_m_LBS= lmer(LBS ~ ft + grid + (1|byear), data = subset(male))
#negative binomial regression
ab_m_surv= glmer.nb(age ~ ft + grid + (1|byear), data = subset(male), control=glmerControl(tol=1e-6,optimizer="bobyqa",optCtrl=list(maxfun=1e19)))
Затем я хочу построить только две переменные (ft2
а также gridSU
) от каждой модели.
ab_f_LBS <- tidy(ab_f_LBS) %>% filter(!grepl('sd_Observation.Residual', term)) %>% filter(!grepl('byear', group))
ab_m_LBS <- tidy(ab_m_LBS) %>% filter(!grepl('sd_Observation.Residual', term)) %>% filter(!grepl('byear', group))
ab_f_surv <- tidy(ab_f_surv) %>% filter(!grepl('sd_Observation.Residual', term)) %>% filter(!grepl('byear', group))
ab_m_surv <- tidy(ab_m_surv) %>% filter(!grepl('sd_Observation.Residual', term)) %>% filter(!grepl('byear', group))
Я тогда готов сделать заговор.
#required packages
library(dotwhisker)
library(broom)
dwplot(list(ab_f_LBS, ab_m_LBS, ab_f_surv, ab_m_surv),
vline = geom_vline(xintercept = 0, colour = "black", linetype = 2),
dodge_size=0.2,
style="dotwhisker") %>% # plot line at zero _behind_ coefs
relabel_predictors(c(ft2= "Immigrants",
gridSU = "Grid (SU)")) +
theme_classic() +
xlab("Coefficient estimate (+/- CI)") +
ylab("") +
scale_color_manual(values=c("#000000", "#666666", "#999999", "#CCCCCC"),
labels = c("Female LRS", "Male LRS", "Female survival", "Male survival"),
name = "First generation models") +
theme(axis.title=element_text(size=10),
axis.text.x = element_text(size=10),
axis.text.y = element_text(size=12, angle=90, hjust=.5),
legend.position = c(0.7, 0.8),
legend.justification = c(0, 0),
legend.title=element_text(size=12),
legend.text=element_text(size=10),
legend.key = element_rect(size = 0.1),
legend.key.size = unit(0.5, "cm"))
Я сталкиваюсь с этой проблемой:
- Сообщение об ошибке:
Error in psych::describe(x, ...) : unused arguments (conf.int = TRUE, conf.int = TRUE)
, Когда я пытаюсь только с 1 моделью (т.е.dwplot(ab_f_LBS)
это работает, но как только я добавляю другую модель, я получаю это сообщение об ошибке.
Как я могу построить 4 модели регрессии на одном и том же графике?
Обновить
Результаты traceback()
:
> traceback()
14: stop(gettextf("cannot coerce class \"%s\" to a data.frame", deparse(class(x))),
domain = NA)
13: as.data.frame.default(x)
12: as.data.frame(x)
11: tidy.default(x, conf.int = TRUE, ...)
10: broom::tidy(x, conf.int = TRUE, ...)
9: .f(.x[[i]], ...)
8: .Call(map_impl, environment(), ".x", ".f", "list")
7: map(.x, .f, ...)
6: purrr::map_dfr(x, .id = "model", function(x) {
broom::tidy(x, conf.int = TRUE, ...)
})
5: eval(lhs, parent, parent)
4: eval(lhs, parent, parent)
3: purrr::map_dfr(x, .id = "model", function(x) {
broom::tidy(x, conf.int = TRUE, ...)
}) %>% mutate(model = if_else(!is.na(suppressWarnings(as.numeric(model))),
paste("Model", model), model))
2: dw_tidy(x, by_2sd, ...)
1: dwplot(list(ab_f_LBS, ab_m_LBS, ab_f_surv, ab_m_surv), effects = "fixed",
by_2sd = FALSE)
Вот моя сессия информация:
> sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_CA.UTF-8/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] dotwhisker_0.5.0 broom_0.5.0 broom.mixed_0.2.2
[4] glmmTMB_0.2.2.0 lme4_1.1-18-1 Matrix_1.2-14
[7] bindrcpp_0.2.2 forcats_0.3.0 stringr_1.3.1
[10] dplyr_0.7.6 purrr_0.2.5 readr_1.1.1
[13] tidyr_0.8.1 tibble_1.4.2 ggplot2_3.0.0
[16] tidyverse_1.2.1 lubridate_1.7.4 devtools_1.13.6
loaded via a namespace (and not attached):
[1] ggstance_0.3.1 tidyselect_0.2.5 TMB_1.7.14 reshape2_1.4.3
[5] splines_3.5.1 haven_1.1.2 lattice_0.20-35 colorspace_1.3-2
[9] rlang_0.2.2 pillar_1.3.0 nloptr_1.2.1 glue_1.3.0
[13] withr_2.1.2 modelr_0.1.2 readxl_1.1.0 bindr_0.1.1
[17] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0 cellranger_1.1.0
[21] rvest_0.3.2 coda_0.19-2 memoise_1.1.0 Rcpp_0.12.19
[25] scales_1.0.0 backports_1.1.2 jsonlite_1.5 hms_0.4.2
[29] digest_0.6.18 stringi_1.2.4 grid_3.5.1 cli_1.0.1
[33] tools_3.5.1 magrittr_1.5 lazyeval_0.2.1 crayon_1.3.4
[37] pkgconfig_2.0.2 MASS_7.3-50 xml2_1.2.0 assertthat_0.2.0
[41] minqa_1.2.4 httr_1.3.1 rstudioapi_0.8 R6_2.3.0
[45] nlme_3.1-137 compiler_3.5.1
2 ответа
С помощью этой виньетки. Если вы хотите использовать tidy
модели, вам нужно будет создать один data.frame
с model
переменная.
ab_f_LBS <- tidy(ab_f_LBS) %>%
filter(!grepl('sd_Observation.Residual', term)) %>%
filter(!grepl('byear', group)) %>%
mutate(model = "ab_f_LBS")
ab_m_LBS <- tidy(ab_m_LBS) %>%
filter(!grepl('sd_Observation.Residual', term)) %>%
filter(!grepl('byear', group)) %>%
mutate(model = "ab_m_LBS")
ab_f_surv <- tidy(ab_f_surv) %>%
filter(!grepl('sd_Observation.Residual', term)) %>%
filter(!grepl('byear', group)) %>%
mutate(model = "ab_f_surv")
ab_m_surv <- tidy(ab_m_surv) %>%
filter(!grepl('sd_Observation.Residual', term)) %>%
filter(!grepl('byear', group)) %>%
mutate(model = "ab_m_surv")
#required packages
library(dotwhisker)
library(broom)
tidy_mods <- bind_rows(ab_f_LBS, ab_m_LBS, ab_f_surv, ab_m_surv)
dwplot(tidy_mods,
vline = geom_vline(xintercept = 0, colour = "black", linetype = 2),
dodge_size=0.2,
style="dotwhisker") %>% # plot line at zero _behind_ coefs
relabel_predictors(c(ft2= "Immigrants",
gridSU = "Grid (SU)")) +
theme_classic() +
xlab("Coefficient estimate (+/- CI)") +
ylab("") +
scale_color_manual(values=c("#000000", "#666666", "#999999", "#CCCCCC"),
labels = c("Female LRS", "Male LRS", "Female survival", "Male survival"),
name = "First generation models") +
theme(axis.title=element_text(size=10),
axis.text.x = element_text(size=10),
axis.text.y = element_text(size=12, angle=90, hjust=.5),
legend.position = c(0.7, 0.8),
legend.justification = c(0, 0),
legend.title=element_text(size=12),
legend.text=element_text(size=10),
legend.key = element_rect(size = 0.1),
legend.key.size = unit(0.5, "cm"))
Из того, что я видел до сих пор, и процитировать виньетку:
можно изменить форму оценки точки вместо использования разных цветов.
Поэтому я не уверен, что изменения формы и цвета легко меняются, не копаясь немного дальше...
У меня есть пара комментариев / предложений. (tl; dr в том, что вы можете значительно упростить процесс моделирования / создания графики...)
Настроить:
library(dplyr)
Q1 <- read.table("Q1.txt", header=TRUE)
library(lme4)
library(glmmTMB) ## use this for NB models
library(broom.mixed) ## CRAN version should be OK
library(dotwhisker) ## use devtools::install_github("fsolt/dotwhisker")
- Модель, которую вы пометили как "модель Пуассона" , не является - это линейная смешанная модель, и параметры не будут особенно сопоставимы с моделью NB
- Я получил много предупреждений от
glmer.nb
и изменился наglmmTMB
#Female models
#poisson regression
ab_f_LBS= glmer(LBS ~ ft + grid + (1|byear),
family=poisson, data = subset(Q1,sex=="F"))
#negative binomial regression
ab_f_surv = glmmTMB(age ~ ft + grid + (1|byear),
data = subset(Q1, sex=="F"),
family=nbinom2)
#Male models
#poisson regression
ab_m_LBS= update(ab_f_LBS, data=subset(Q1, sex=="M"))
ab_m_surv= update(ab_f_surv, data=subset(Q1, sex=="M"))
Теперь сюжет:
dwplot(list(LBS_M=ab_m_LBS,LBS_F=ab_f_LBS,surv_m=ab_m_surv,surv_f=ab_f_surv),
effects="fixed",by_2sd=FALSE)+
geom_vline(xintercept=0,lty=2)
ggsave("dwplot1.png")
> sessionInfo()
R Under development (unstable) (2018-07-26 r75007)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.5 LTS
Matrix products: default
BLAS: /usr/local/lib/R/lib/libRblas.so
LAPACK: /usr/local/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_CA.UTF8 LC_NUMERIC=C
[3] LC_TIME=en_CA.UTF8 LC_COLLATE=en_CA.UTF8
[5] LC_MONETARY=en_CA.UTF8 LC_MESSAGES=en_CA.UTF8
[7] LC_PAPER=en_CA.UTF8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_CA.UTF8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 dotwhisker_0.5.0.9000 ggplot2_3.0.0
[4] broom.mixed_0.2.3 glmmTMB_0.2.2.0 lme4_1.1-18.9000
[7] Matrix_1.2-14 dplyr_0.7.6
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 pillar_1.3.0 compiler_3.6.0 nloptr_1.2.1
[5] plyr_1.8.4 TMB_1.7.14 bindr_0.1.1 tools_3.6.0
[9] digest_0.6.18 ggstance_0.3.1 tibble_1.4.2 nlme_3.1-137
[13] gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.2 rlang_0.2.2
[17] coda_0.19-2 withr_2.1.2 stringr_1.3.1 grid_3.6.0
[21] tidyselect_0.2.5 glue_1.3.0 R6_2.3.0 minqa_1.2.4
[25] purrr_0.2.5 tidyr_0.8.1 reshape2_1.4.3 magrittr_1.5
[29] backports_1.1.2 scales_1.0.0 MASS_7.3-50 splines_3.6.0
[33] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3 stringi_1.2.4
[37] lazyeval_0.2.1 munsell_0.5.0 broom_0.5.0 crayon_1.3.4